Особую группу языков программирования образуют проблемно - ориентированные языки, предназначенные для описания специальных научно-технических проблем. Типичными представителями этой группы являются языки STRESS, разработанный для решения задач конструирования, и ОСС-2 (язык описания структурных алгоритмов и схем), обеспечивающий описание задачи, начиная с самого высокого уровня абстракции (например, уровня архитектуры обобщенной модели семейства ЭВМ) и кончая уровнем принципиальных схем. Для их использования программа помимо исходных данных должна содержать указания, к какому классу следует отнести ту или иную задачу, решаемую на очередном этапе. Это, в свою очередь, требует либо создания универсального для описания рассматриваемых задач языка, интерпретирующего исходные данные, либо разработки алгоритма анализа исходных данных и определения принадлежности каждой частной задачи к тому или иному классу с последующим выбором соответствующей методики ее решения, которая может быть представлена как в машинно-ориентированном, так и в процедурно-ориентированном языке.
Обилие существующих в настоящее время языков программирования, а также различный уровень имеющегося для них математического обеспечения обусловливают важность задачи обоснованного выбора базового языка, так как от правильности ее решения во многом зависит эффективность использования разрабатываемой системы машинного проектирования.
К базовому языку САПР предъявляют следующие основные требования: простота описания входной первичной информации; малые затраты машинного времени на реализацию программы, записанной в символах языка; удобство стыковки отдельных программ; наличие в языке средств описания информации специального вида; возможность использования современного математического обеспечения, представляемого на.одном из процедурно-ориентированных языков; простота внесения изменений в текст программы, записанной в символах языка.
Опыт создания систем автоматизированного проектирования в нашей стране и за рубежом свидетельствует в пользу таких языков программирования, как АЛГОЛ-68, ПЛ-1 и других языков подобного класса.
В настоящее время создание систем автоматизированного конструирования развивается по следующим двум направлениям:
1) проектирование систем, работающих в режиме пакетной обработки информации;
2) конструирование систем, работающих в режиме диалога конструктора-оператора с ЭВМ.
Системы, работающие в первом режиме, исключают непосредственное взаимодействие пользователя с ЭВМ. Программы собираются в пакет и вводятся автоматически в последовательности, определяемой программой-диспетчером. При этом возможна лишь некоторая, как правило незначительная, перестройка системы на основании указаний конструктора-оператора, заключающаяся в изменении последовательности решения задач на каждом этапе проектирования. В таких системах коррекция полученных результатов возможна лишь после окончания обработки информации на ЭВМ и отображении ее на соответствующем носителе. Данный режим работы системы пригоден лишь для решения задач, не содержащих большого числа противоречивых требований, приводящих к неоднозначности решений и требующих вмешательства разработчика.
К таким задачам можно отнести задачи анализа и моделирования полей различной физической природы, действующих в конструкциях РЭА, так как эти задачи сводятся к чисто расчетным вычислительным операциям, гарантирующим однозначное решение.
Системы, работающие во втором режиме, предусматривают связь разработчика е ЭВМ через специальный дистанционный пульт. При этом оказывается возможным активное вмешательство разработчика в работу системы. Необходимость такого вмешательства на различных этапах проектирования, накладывает определенные требования на характеристики используемой в САПР машины. Если вычислительная машина, на которой проводится проектирование конструкций РЭА, работает в режиме последовательной обработки информации, то каждое вмешательство потребует больших затрат времени: распечатка с помощью ЭВМ полученных результатов, передача их разработчику, нанесение указаний разработчика на перфокарты (перфоленту) и введение их в машину. Поэтому разработчик должен иметь возможность непосредственного общения с машиной. Для того чтобы при этом не было непроизводительных потерь машинного времени, машина во время проектирования должна работать в режиме разделения времени. В подобном режиме имеется возможность выполнения нескольких задач одновременно, без заметной задержки в завершении каждой из них по сравнению с раздельным решением этих задач.
Дальнейшее развитие таких систем связано с использованием специальных многопроцессорных ЭВМ, в которых подобный эффект разделения времени выполнения операций достигается не программными, а аппаратными средствами.
На различных этапах проектирования вводимая информация и результаты работы машины имеют различную форму записи (запись на языке проектирования, схемы размещения конструктивных элементов, таблицы, чертежи печатных плат и т. п.). Пульт разработчика должен обеспечивать быстрый ввод и вывод как алфавитно-цифровой, так и графической информации. Наиболее удобен для этих целей пульт с индикатором на ЭЛТ и световым пером — дисплей с ЭЛТ и световым пером. Использование таких систем целесообразно при решении задач, в которых встречаются противоречивые требования к большому числу параметров, что приводит к неоднозначности решений и не всегда позволяет построить пригодные для ЭВМ критерии выбора оптимального решения.
Так, например, при компоновке ячеек из модулей желательно реализовать возможно большее число связей между модулями внутри ячейки (улучшает электрические характеристики прибора) и одновременно стремиться к наименьшему числу разнотипных ячеек (диктуется интересами производства и эксплуатации). Поиск оптимального решения приводит к перебору всех возможных вариантов компоновки, что практически невозможно из-за слишком больших затрат машинного времени. Вмешательство разработчика в процесс решения такой задачи ускоряет нахождение приемлемого результата.
При машинном проектировании печатного монтажа в случае плат с высокой плотностью расположения проводников удается развести не более 90% соединений. Вмешательство человека позволяет улучшить качество получаемого решения. В связи с этим для решения конструкторских задач по компоновке, размещению и трассировке проводников целесообразнее использовать САПР, работающие в диалоговом режиме.
При выборе ЭВМ для решения определенного класса задач автоматизированного проектирования и работы ее в составе САПР в первую очередь учитывают такие параметры машин, как производительность (быстродействие) и объем оперативной памяти, а также состав периферийного оборудования, входящий в комплект данной ЭВМ
Большинство действующих систем строилось на основе ЭВМ трех-адресного типа: М-220, М-222 и БЭСМ-4М. Хотя эти ЭВМ и обладали малой производительностью, но имели широко развитое математическое обеспечение. Расширение оперативных возможностей таких машин осуществлялось за счет подключения внешних запоминающих устройств (ЗУ) на магнитных барабанах (МБ). В качестве алгоритмических языков использовались АЛГОЛ-60 и АВТОКОД.
Кроме того, системы создавались на основе одноадресной ЭВМ большой производительности типа БЭСМ-6, в состав которых также входили внешние ЗУ на магнитных барабанах. В качестве алгоритмических языков использовались АЛГОЛ-60, ФОРТРАН-4, АВТОКОД.
В последние годы в распоряжении конструкторов РЭА появились более совершенные ЭВМ, составляющие третье поколение машин (первое поколение ЭВМ изготовлялось на основе электронных ламп, второе — на основе дискретных полупроводниковых приборов, третье — на основе серийных микросхем малой и средней степени интеграции). К числу подобных ЭВМ следует отнести электронные вычислительные машины Единой системы (ЕС ЭВМ). Эти машины имеют широкий номенклатурный ряд от ЭВМ средней производительности (ЕС-1020, ЕС-1022) до машин большой производительности (ЕС-1050, ЕС-1060). Под это оборудование разработан стандартный ряд периферийных устройств, таких, как устройства подготовки данных (УПД), координатоскопы, графопостроители, координатографы, алфавитно-цифровые и графические дисплеи, различные печатающие устройства и т. д. Машины Единой системы имеют комплект специальных организующих программ, образующих операционную систему ЭВМ (ОС ЭВМ), отдельные фрагменты которой работают на основе долговременной памяти с дисковыми ЗУ (ДОС ЭВМ).
Такая операционная система, с одной стороны, помогает программисту-оператору, так как облегчает процесс программирования и позволяет укрупненно описать вычислительный процесс, а с другой стороны, предоставляет возможность оптимально пользоваться программными и аппаратными средствами ЭВМ, образуя сложную, хорошо организованную вычислительную систему. Все это расширяет возможности современного парка ЭВМ и делает ЕС ЭВМ одним из перспективных видов оборудования для автоматизации проектирования.
Кроме того, разновидностью ЭВМ третьего поколения, получившей широкое распространение в нашей стране, является Система малых ЭВМ (СМ ЭВМ), Особенности этих машин заключаются в том, что они при малых габаритах имеют меньший объем основной оперативной памяти (32 или 64 кбайт) и меньшую длину слова, т. е. отдельные команды, представленные в виде совокупности двоичных разрядов, обрабатываемых в ЭВМ как единое целое. Большинство таких ЭВМ работает с 16-разрядным словом.
ЕС ЭВМ имеют разноформатную систему команд, размеры которых составляют от 16 до 48 двоичных разрядов (от 2 до 6 байт), что позволяет обеспечить совместимость таких машин с работой СМ ЭВМ.
Длина слова — важный параметр ЭВМ. Чем больше длина слова, тем больше число команд может быть у машины и тем больше точность обработки числовых данных, хотя при этом значительно возрастает стоимость ЭВМ.
СМ ЭВМ представляет собой недорогие, малогабаритные, универсальные вычислительные машины, предназначенные для решения широкого круга народнохозяйственных задач. Вычислительная мощность СМ ЭВМ постоянно увеличивается за счет включения в их состав разнообразных недорогих внешних ЗУ на магнитной ленте и магнитных дисках, а также совмещения работы со стандартным периферийным оборудованием ЕС ЭВМ. Учитывая то обстоятельство, что СМ ЭВМ имеют меньшую стоимость по сравнению с ЕС ЭВМ при высокой производительности, можно считать эту разновидность ЭВМ также перспективной для работы в составе автоматизированных систем проектирования РЭА и ЭВА.