Смекни!
smekni.com

Автоматизация проектирования изделий электронной техники (стр. 2 из 4)

Шаг 6.

Действия описанные в шагах 2,3,4,5, повторяются до полного заполнения формируемого модуля.

Далее весь процесс повторяется до тех пор, пока не будет сформирован (

-1) модуль. Последний же
-й полностью включает в себя множество
, так как

.

Выполнение компоновки.

В данной электрической функциональной схеме элементы типа И-НЕ заменим элементами 2И-НЕ, в целях уменьшения количества микросхем и себестоимости платы. Данную электрическую функциональную схему разбиваем на 3 блока. Далее выполняем компоновку для каждого блока, для чего представляем их в виде графов, где множеству вершин соответствуют элементы электрической схемы блока, а множество ребер электрическим связям между этими элементами.

Расчеты для первого блока:

Чертим граф для элементов типа 3И-НЕ:

Рис.1

Составляем матрицу смежности

Т1 Т2 Т3 Т4 Т5 Т6 Т7 Т8 Т9 Т10 Т11 p
Т1 0 0 2 0 0 1 2 0 0 1 0 6
Т2 0 0 0 1 1 0 0 1 2 0 0 5
Т3 2 0 0 0 0 1 1 0 0 1 0 5
Т4 0 1 0 0 2 0 0 1 1 0 0 5
Т5 0 1 0 2 0 1 0 1 2 0 0 7
Т6 1 0 1 0 1 0 1 1 0 1 1 7
Т7 2 0 1 0 0 1 0 1 0 1 0 6
Т8 0 1 0 1 1 1 1 0 1 1 1 8
Т9 0 2 0 1 2 0 0 1 0 1 0 7
Т10 1 0 1 0 0 1 1 1 1 0 1 7
Т11 0 0 0 0 0 1 0 1 0 1 0 3

За базисную принимаем максимально связанную вершину, т.е. Т8. Она связана с вершинами Т2, Т4, Т5, Т6, Т7, Т9, Т10, Т11.Считаем функционал:

F2=5-1=4; F4=5-1=4; F5=7-1=6; F6=7-1=6;

F7=6-1=5; F9=7-1=6; F10=7-1=6; F11=3-1=2.

Выбираем Т11 т.к. F11 минимально

Т1 Т2 Т3 Т4 Т5 Т6 Т7 Т9 Т10 Т811 p
Т1 0 0 2 0 0 1 2 0 1 0 6
Т2 0 0 0 1 1 0 0 2 0 1 5
Т3 2 0 0 0 0 1 1 0 1 0 5
Т4 0 1 0 0 2 0 0 1 0 1 5
Т5 0 1 0 2 0 1 0 2 0 1 7
Т6 1 0 1 0 1 0 1 0 1 2 7
Т7 2 0 1 0 0 1 0 0 1 1 6
Т9 0 2 0 1 2 0 0 0 1 1 7
Т10 1 0 1 0 0 1 1 1 0 2 7
Т811 0 0 0 0 0 1 0 0 1 2 11

За базисную принимаем максимально связанную вершину, т.е. Т811. Она связана с вершинами Т2, Т4, Т5, Т6, Т7, Т9, Т10.Считаем функционал:

F2=5-1=4; F4=5-1=4; F5=7-1=6; F6=7-2=5;

F7=6-1=5; F9=7-1=6; F10=7-2=5.

Выбираем Т2 т.к. F2 минимально и с минимальным порядковым номером.

Т1 Т3 Т4 Т5 Т6 Т7 Т9 Т10 Т2811 p
Т1 0 2 0 0 1 2 0 1 0 6
Т3 2 0 0 0 1 1 0 1 0 5
Т4 0 0 0 2 0 0 1 0 2 5
Т5 0 0 2 0 1 0 2 0 2 7
Т6 1 1 0 1 0 1 0 1 2 7
Т7 2 1 0 0 1 0 0 1 1 6
Т9 0 0 1 2 0 0 0 1 3 7
Т10 1 1 0 0 1 1 1 0 2 7
Т2811 0 0 0 0 1 0 0 1 4 16

В результате проведения процесса последовательной компоновки конструктивных узлов РЭА, получили электрическую принципиальную схему состоящую из четырёх микросхем К155ЛА4 , DD1={2,8,11}, DD2={4,5,9}, DD3={1,3,6}, DD4={7,10};трёх К155ЛА3 DD5={3,7,8,9},DD6={1,2,4,6}, DD7={5,10}, четырёх К155ЛР1 DD8={4,6}, DD9={2,7}, DD10={3,5}, DD11={1}.

Схема электрическая принципиальная приведена в приложении 1. По этой схеме построим граф (рис. 2).

Рис.2


2. Размещение элементов на плате

2.1 Краткое описание алгоритма последовательной установки элементов РЭА

Алгоритм последовательной установки РЭА не требует первоначального размещения элементов. Сущность этого этапа состоит в последовательном закреплении элементов РЭА на монтажной плате относительно каких-либо ранее закрепленных элементов. При этом из числа не размещенных элементов выбирается тот элемент, для которого характеристика, связанная с длиной связи относительно ранее размещенных элементов, оказывается наилучшей. В качестве первоначально закрепленных на монтажной плоскости конструктивных элементов обычно выбирают разъемы. В связи с этим на монтажной плоте первыми размещаются элементы, имеющие максимальное количество связей с разъемами.

Вся площадь платы разбивается координатной сеткой на отдельные ячейки, линейные размеры которых больше или равны установочным размерам элементов. Вершины графа, соответствующие разъему, отображаются на подмножество мест, расположенных на одном из краев монтажной платы. Очередная вершина выбирается по максимальному количеству связей с уже размещенными вершинами, и помещаются в свободную соседнюю позицию или в такую позицию из числа свободных, которая обеспечивает минимальную длину связей между размещаемой вершиной и уже размещенными вершинами графа.

В качестве исходных данных необходимо ввести данные о модели монтажной платы.

Ограничения на расположения элементов, на расположение разъема, а так же данные о связях между размещенными элементами.

В качестве критерия выбора очередного элемента, подлежащего установке на плате, используется коэффициент относительной взвешенности связности:

, (8)

где

-количество связей i-ого элемента с установленным ранее на плате j-ым элементом , порядковый номер которого-m;

g -количество уже закрепленных на плате элементов;

Vi –общее число связей I-ого элемента со всеми остальными элементами множества X.

Последовательность работы алгоритма:

Формируется массив номеров элементов и подготавливается (обнуляется) массив установочных мест.

Выбираем за исходное размещение местонахождение разъема и элементов, закрепляемых на установочных местах платы по требованию разработчика.

В множестве размещаемых элементов, обнуляем элементы размещенные по требованию разработчика.

Выбираем из множества N еще не размещенный элемент,

для которого значение Ki максимально. Если ряд элементов имеет одинаковое значение Ki , то выбираем элемент с минимальным порядковым номером.

Для множества незанятых позиций ряда определяем позицию, закрепление которой элемента Ni приводит к минимальному приращению функции цели.

(9)

где dij – элемент матрицы расстояний.

Общее суммарное расстояние от закрепляемого элемента к закрепленным будет минимальным. Проверяем не является ли данная позиция областью, запрещенной для размещения элементов.

Производим закрепление элемента Ni за свободной позицией ряда, в которой обеспечивается минимальное приращение функции цели.

Проверяем все ли элементы размещены на плате, если нет, то переходим к пункту 4.

Выполнение размещения

DD1 DD2 DD3 DD4 DD5 DD6 DD7 DD8 DD9 DD10 DD11 X1 p
DD1 0 7 2 3 7 3 2 2 2 1 3 3 35
DD2 7 0 1 1 3 7 0 6 0 0 0 3 28
DD3 2 1 0 7 2 6 2 2 0 0 1 3 26
DD4 3 1 7 0 1 4 2 4 0 0 1 3 30
DD5 7 3 2 1 0 12 5 0 2 0 0 3 35
DD6 3 7 6 4 12 0 6 0 0 0 0 4 42
DD7 2 0 2 2 5 6 0 0 0 1 0 1 19
DD8 2 6 2 4 0 0 0 0 10 9 2 0 35
DD9 2 0 0 0 2 0 0 10 0 9 0 0 23
DD10 1 0 0 0 0 0 1 9 9 0 0 0 20
DD11 3 0 1 1 0 0 0 2 0 0 0 2 9
X1 3 3 3 3 3 4 1 0 0 0 2 0 21

По графу (рис.2) строим матрицу смежности и определяем степень каждой вершины.