Конструкция запоминающей ЭЛТ схематично представлена на рис. 4. Запоминающая поверхность состоит из тонкой металлической сетки, на которую со стороны экрана осажден слой диэлектрика. Внутри колбы размещены две электронные пушки: записывающая, которая формирует модулируемый и адресуемый отклоняющей системой высокоэнергетический пучок, и воспроизводящая, в которой создается интенсивный расходящийся пучок электронов с невысокой энергией. Специальные кольцевые электроды, расположенные на стенках трубки и находящиеся под определенным потенциалом, создают электростатическое поле, благодаря которому медленные электроны двигаются перпендикулярно мишени, равномерно распределяясь по ее поверхности.
Рис. 4. Схематическое изображение конструкции запоминающей трубки:
ЗП – записывающая пушка; ВП – воспроизводящая пушка; ОК – отклоняющие катушки; К – коллекторная сетка; С – сетка мишени; Д – диэлектрик; КЭ – кольцевые электроды; АЭ – алюминированный экран.
Основным преимуществом запоминающей ЭЛТ является простота индикаторов, создаваемых на их базе отсутствие мерцания и высокая яркость. Разрешающая способность экрана в них также достаточно высока и определяется размером и количеством отверстий в сетке мишени. Однако важным недостатком индикаторов на запоминающих трубках, ограничивающим их использование во многих областях, является невозможность избирательного стирания информации. Применяются они в основном в качестве устройства вывода графических данных из машины и в радиолокационных системах.
Электролюминесцентное излучение возникает в результате приложения электрического поля к люминофорному материалу. Интенсивность излучения зависит от напряженности ноля, а также часто ты его изменения, если поле переменное. Свечение связано с ускорением движения носителей зарядов в люминофоре, для чего требуется достаточно высокая напряженность поля (порядка 103- 106 В/см). Наиболее распространенным люминофором является сульфид цинка (ZnS) с примесями меди, марганца и некоторых других элементов. От типа люминофора и количества примесей зависим цвет излучения, перекрывающий практически всю видимую область спектра.
Распространение в области отображения информации получили два основных типа электролюминесцентных индикаторов (ЭЛИ): построенных на основе порошковых люминофоров, возбуждаемых постоянным напряжением, и с использованием люминофоров в виде тонкой пленки, возбуждаемых высокочастотным переменным напряжением.
Основой электролюминесцентного элемента постоянного тока является порошкообразный люминофор, кристаллы которого вместе с примесями распределены в связующем веществе. Этот состав наносят на прозрачную пластину с проводящим покрытием (обычно используется слой оксида олова). С другой стороны к люминофору прикладывают тонкую металлическую пластину (фольгу). Вся конструкция размещена в пластмассовом корпусе и герметизирована (рис. 5.).
Рис. 5. Конструкция электролюминесцентного элемента постоянного тока:
1 – люминофорный слой; 2 – металлический электрод; 3 – выводные контакты; 4 – герметический корпус; 5 – прозрачный электрод (
); 6 – стеклянная подложкаВажным преимуществом электролюминесцентных элементов является их малая толщина, позволяющая конструировать компактные индикаторы. Управляются они напряжениями порядка 50 — 100 В, однако по яркости и контрастности уступают многим другим типам излучающих элементов.
В среднем для ЭЛИ постоянного тока при питающем напряжении около 100 В яркость свечения составляет примерно 300 кд/м2. Характерным для этих элементов является уменьшение их световой Мощности в процессе эксплуатации, что связано с миграцией примесей в люминофоре в зонах контакта с электродом. Срок службы элементов может быть увеличен, если осуществить их питание импульсным напряжением. Отметим также важную для некоторых применений способность ЭЛИ менять цвет излучения в зависимости от приложенного напряжения.
Тонкопленочные индикаторы переменного тока являются наиболее перспективными приборами, реализующими принцип электролюминесценции. Слой люминофора размещают между слоями диэлектрика, обеспечивающими гальваническое разделение его с электродами (рис. 6.). Все слои создаются с помощью технологии напыления в вакууме на стеклянную подложку. Долговечность таких ЭЛИ значительно выше, чем порошковых, питающее их высокочастотное напряжение составляет 150 — 250 В.
Рис. 6. Структура слоев тонкопленочного электролюминесцентного индикатора переменного тока:
1 – прозрачный электрод; 2 – пленка люминофора; 3 – металлический электрод; 4 – светопоглощающий диэлектрик; 5 – прозрачный диэлектрик; 6 – стеклянная подложка
Светоизлучающие диоды (СИД) представляют собой твердотельные приборы, работающие на р-п-переходах, образованных в полупроводниковом материале. В их основе лежит принцип инжекционной люминесценции. Эксплуатационные достоинства СИД способствовали их широкому использованию в вычислительной и другой аппаратуре в качестве дискретных индикаторов.
Рассмотрим коротко физические основы работы светоизлучающих диодов. Известно, что в полупроводниках внешние оболочки атомов, создающих кристаллическую структуру, в результате значительного сближения образуют определенные энергетические зоны. В так называемой валентной зоне располагаются электроны, обеспечивающие связь атомов в кристалле. Отдельные электроны под воздействием тепловой энергии могут переходить в другую зону, называемую зоной проводимости. При этом переходе образуется свободное энергетическое состояние, получившее название дырка. Электроны и дырки рассматриваются как частицы, имеющие соответственно отрицательный и положительный заряды. Введение в материал полупроводника определенных примесей создает избыток электронов или дырок, образуя область проводимости п- или p-типа. Когда области обоих типов выполнены в одном кристалле, они образуют р-п-переход. Через него могут диффундировать заряды, образуя так называемые неосновные носители, т. е. носители зарядов, имеющих знак, противоположный основным (электроны в р-области и дырки в п-области). Диффузия продолжается до тех пор, пока не установится потенциальный барьер, препятствующий движению носителей заряда.
Обычно возвращаемая энергия выделяется в виде теплоты, однако при определенных условиях (сохранение энергии и импульса при рекомбинации) происходит излучение фотона. В зависимости от материала полупроводника и концентрации примесей излучение имеет определенную длину волны, что позволяет создавать СИД с различным цветом свечения. Так как переход электронов осуществляется не с дискретных уровней, а с зон разрешенных состояний, имеющих определенную ширину, то излучение не является монохроматическим.
Рис. 9. Конструкция светоизлучающего диода:
1 – полупроводниковый слой p-типа; 2 – прозрачная подложка; 3 – полупроводниковый слой п-типа; 4 – керамический корпус; 5 – электрод
Изготавливаются СИД в виде дискретных элементов отображения (рис. 9), в виде монолитных полосково-сегментных приборов, а также в виде небольших матриц с
- адресацией. В настоящее время промышленностью выпускаются в основном приборы, излучающие в красном, зеленом и желтом диапазонах при яркостях примерно в 100 кд/м2. Монолитные кристаллы СИД имеют площадь не более 1 – 2 см2, однако уже длительное время ведутся работы по созданию на их базе плоских цветных телевизионных экранов.В принципе любой газоразрядный прибор представляет собой заполненную инертным газом изолированную от внешней среды ячейку, внутри которой на близком расстоянии друг от друга расположены два электрода. Широкое распространение в технике получили газоразрядные приборы типа неоновых ламп, тиратронов тлеющего разряда, линейных газоразрядных индикаторов и пр. Их область применения ограничена в основном сигнализацией состояния различных устройств и объектов.
В простых устройствах отображения цифровой и знаковой информации нашли применение индикаторные лампы тлеющего разряда. Их особенностью является наличие нескольких фигурных катодов в одном баллоне.
Значительно расширилась область применения газоразрядных индикаторов с появлением матричных цифровых панелей (плазменных панелей). Они представляют собой плоский экран, на котором любое изображение создается большим числом светоизлучающих газоразрядных элементов, образованных на пересечениях горизонтальных и вертикальных электродов.
Существуют два основных типа плазменных панелей: постоянного тока с внешней адресацией и переменного тока с запоминанием информации. Панели постоянного тока имеют плоскую трехслойную конструкцию, в которой между двумя стеклянными пластинами с нанесенной на их внутреннюю поверхность системой взаимно перпендикулярных полупрозрачных электродов расположена перфорированная изолирующая матрица. Отверстия в матрице заполнены газом и размещаются в местах пересечения электродов. Свечение возникает при подаче на соответствующую пару электродов напряжений. Для получения устойчивого изображения необходимо последовательно подавать высоковольтное напряжение на требуемые точки.