Е1/No
Е2/No
Рис.6
Смесь сигнала и шума Z(t) фильтруется согласованным фильтром, а затем выделяется огибающая сигнала на выходе этого фильтра. Огибающая сравнивается с пороговым уровнем, величина которого при равных априорных вероятностях P(U1(t)=P(U2(t) определяется соотношением Ei/No. Если эти вероятности не равны, пороговый уровень изменится на lnP(U1(t)/P(U2(t). При превышении порогового уровня в верхнем канале принимается решение bi*=1, а если в нижнем, то bi*=0. Временные диаграммы поясняющие работу оптимального демодулятора ЧМ сигнала приведены на рис.7
Рис. 7.
Алгоритм приёма имеет вид:
ò Z(t)×Si(t)dt – 0.5Ei > ò Z(t)×Sj(t)dt – 0.5Ej; j¹i,
0 0
где Ej – энергия ожидаемого сигнала.
(Z,Si) – ò Z(t)×Si(t)dt , называют активным фильтром, или коррелятором.
0
Поэтому приёмник реализующий данный алгоритм называют корреляционным.
Вероятность неправильного приёма дискретного двоичного сигнала для ЧМ модуляции, при отношении энергии сигнала к спектральной плотности шума на выходе детектора h2=169, определим по формуле:
P=0,5 e –0.5 h2 =0,5 e - 84,5 = 10-37
Вероятность ошибки для ЧМ сигнала определяется по формуле:
Pош=0,5[1-Ф(h)],
где
- функция Крампа.Для когерентного приёма фазомодулированного сигнала вероятность ошибки определяется по формуле:
Pош=0.5[1-Ф(
h)]Все рассчитанные данные занесём в таблицу 1.
Графики зависимости Pош=f(h), для приёма ЧМ и ФМ сигналов, построенные с помощью программы Exell, приведены на рис.8.
Таблица 1
ЧМ | ФМ | ||||
h | Ф(h) | Pчм | Ö2× h | Ф(Ö2× h) | Pфм |
0 | 0 | 0,5 | 0 | 0 | 0,5 |
0,2 | 0,1585 | 0,421 | 0,2828 | 0,2205 | 0,3898 |
0,4 | 0,3108 | 0,344 | 0,5657 | 0,4313 | 0,2844 |
0,6 | 0,4515 | 0,274 | 0,8485 | 0,6047 | 0,1977 |
0,8 | 0,5763 | 0,211 | 1,1314 | 0,7415 | 0,1293 |
1,0 | 0,6827 | 0,158 | 1,1442 | 0,8415 | 0,0793 |
1,2 | 0,7699 | 0,115 | 1,6971 | 0,9109 | 0,0446 |
1,4 | 0,8385 | 0,081 | 1,9799 | 0,9523 | 0,0239 |
1,6 | 0,8904 | 0,053 | 2,2627 | 0,9756 | 0,0122 |
1,8 | 0,9281 | 0,035 | 2,5456 | 0,9892 | 0,0054 |
2,0 | 0,9544 | 0,021 | 2,8284 | 0,9956 | 0,0022 |
2,2 | 0,9722 | 0,0139 | 3,113 | 0,99806 | 0,000097 |
2,4 | 0,9836 | 0,0082 | 3,3941 | 0,99933 | 0,000033 |
2,6 | 0,9907 | 0,00465 | 3,6770 | 0,99978 | 0,000011 |
2,8 | 0,9949 | 0,00255 | 3,9598 | 0,99994 | 0,000003 |
3,0 | 0,9973 | 0,00135 | 4,2408 | 0,99997 | 0,000001 |
3,2 | 0,9986 | 0,00068 | 4,5255 | 0,99998 | 0,0000005 |
3,4 | 0,9993 | 0,00035 | 4,8083 | 0,99999 | 0,0000001 |
3,6 | 0,99968 | 0,00016 | |||
3,8 | 0,99986 | 0,00007 | |||
4,0 | 0,99994 | 0,00003 | |||
4,2 | 0,99997 | 0,00001 | |||
4,4 | 0,99999 | 0,000005 |
Сравнивая полученные результаты зависимостей Pош(h) для ЧМ и ФМ мы видим ,что фазовая модуляция является более помехоустойчивой, чем частотная.
РчмРфм
Рис.8
ЗАКЛЮЧЕНИЕ.
Фундаментальными работами В.А.Котельникова и К.Шенонна было положено начало современной теории передачи сообщений. Классическая теория помехоустойчивости при флуктуационных помехах развита для каналов со случайно изменяющимися параметрами и продолжает развиваться в направлении учета реальных характеристик сигналов и помех, в том числе нестационарных. Вопросы синтеза оптимальных приемников непрерывных и импульсных сигналов успешно решаются на основании теории нелинейной фильтрации. Дальнейшим шагом является разработка и применение методов построения оптимальных схем, позволяющих обеспечить высокую достоверность передачи сообщений в каналах с переменными параметрами при неполной априорной информации о сигналах и помехах.
Современная теория передачи сообщений позволяет достаточно полно оценить различные системы связи по их помехоустойчивости и эффективности и тем самым определить, какие из этих систем являются наиболее перспективными. Теория достаточно четко указывает не только возможности совершенствования существующих систем связи, но и пути создания новых, более совершенных систем.
В настоящее время речь идет о создании систем, в которых используются показатели эффективности, близкие к предельным. Одновременное требование высоких скоростей и верности передачи приводит к необходимости применения систем, в которых используются многопозиционные коды и мощные корректирующие коды.
В реальных условиях системы связи должны выполнять большой объем вычислений и логических операций, связанных с изменением и регулированием параметров сигнала, а также с операциями кодирования и декодирования. Наиболее совершенная система связи должна быть сложной саморегулирующейся системой. Практически реализация таких систем должна базироваться на использовании микропроцессоров и ЭВМ.
ЛИТЕРАТУРА.
1. Клюев Л.Л. “Теория электрической связи». Минск, «Дизайн ПРО»,
1998 г.
2. Шувалов Б.П., Захарченко Н.Б., Шварцман В.О. и др ”Передача дис-
кретных сообщений”: Под ред. Шувалова -М.; Радио и связь 1990 г.