При появлении нагара на коллекторе выясняют причину его появления, устраняют ее, а затем протачивают или продораживают коллектор. Щетки электрических машин должны работать бесшумно, их контактная поверхность должна быть хорошо прошлифована к поверхности коллектора. Смазку в подшипниках при нормальных условиях работы необходимо менять не ранее чем через 6—12 месяцев работы двигателя. При работе в запыленных помещениях замену надо производить чаще. Заполнение подшипника смазкой допускается не более чем на а/3 объема свободного пространства, более плотная набивка смазки приводит к нагреву подшипника. Вал двигателя после набивки смазки должен свободно проворачиваться от руки. Во время работы электродвигателя необходимо контролировать температуру нагрева обмоток и корпуса.
Аппаратура управления, защиты и автоматики
Основными операциями управления электроприводом металлорежущих станков являются пуск, регулирование скорости вращения, изменение направления вращения (реверс), торможение и отключение.
Эти операции могут производиться как при помощи аппаратов ручного действия (рубильников и других простейших выключателей, пусковых и регулировочных реостатов и контроллеров), так и автоматически.
Применение аппаратов ручного действия требует от обслуживающего персонала сравнительно высокой квалификации и навыка, а при работе станка с большой частотой включения и выключения эта аппаратура непригодна, так как требует значительных физических усилий от оператора, имеет большие габариты и не обеспечивает необходимой последовательности в работе отдельных элементов схемы.
Автоматическое управление обеспечивает автоматический и дистанционный пуск двигателей, ускорение, изменение скорости вращения, реверс, останов, торможение и определенную последовательность этих операций. Продолжительность рабочих циклов уменьшается за счет сокращения времени переходных режимов, а следовательно, увеличивается производительность и надежность действия, сокращается аварийность, так как исключаются ошибочные операции.
В зависимости от основной аппаратуры, различают три системы автоматического управления электроприводом металлорежущих станков:
1. Релейно-контакторная система без обратных связей, где в качестве основной аппаратуры используют контакторы, магнитные пускатели и различного рода реле.
2. Бесконтактная, разомкнутая система с применением релейно-контакторной аппаратуры иногда в комбинации с магнитными усилителями. Основные функции управления здесь выполняют специальные многообмоточные генераторы постоянного тока; при этом часто осуществляется автоматическое регулирование скорости электропривода.
Однако релейно-контакторная аппаратура имеет следующие недостатки:
1) ограниченный срок службы вследствие износа контактов;
2) большое время срабатывания вследствие инерции ее подвижных частей; в сложных схемах управления это становится ощутимым препятствием, понижающим надежность работы.
3. Непрерывная замкнутая система управления и регулирования с широким применением бесконтактной аппаратуры. Она отличается от предыдущих схем тем, что вход системы управления связывается с выходом, в связи с чем система является не только системой автоматического управления, но и системой автоматического регулирования, дающей возможность автоматически поддерживать на определенном уровне значение какой-либо величины (например, скорости подачи инструмента). Эта система дает возможность одновременно контролировать точность обработки изделия. Применяется она в основном в станках с программным управлением.
Применяемые для управления металлорежущими станками современные электрические аппараты, выполняющие ответственные и весьма различные функции, можно классифицировать по следующим характерным признакам:
1) по назначению — аппаратура управления, защиты и сигнализации;
2) по принципу действия — электромагнитная (контакторы, реле), электротепловая (тепловые реле), электромеханическая (путевые и конечные выключатели), электронная и индукционная;
3) по способу управления — аппаратура ручного и автоматического управления;
4) по роду тока — постоянного и переменного тока.
Исходя из физических явлений, на которых основаны действия аппаратов, наиболее распространенными являются:
1) коммутационные аппараты замыкания и размыкания электрических цепей при помощи контактов (рубильники, переключатели, путевые и конечные выключатели);
2) электромагнитные аппараты, действие которых основано на электромагнитных усилиях, возникающих при работе аппарата (электромагнитные реле, контакторы);
3) индукционные аппараты, действие которых основано на взаимодействии магнитных полей (индукционные реле).
Контакторы
Контактором называется электромагнитный аппарат дистанционного действия с автоматическим или кнопочным включением, предназначенный для частых включений и отключений силовых электрических цепей Частота включений — до 1500 раз в час. В качестве включающего элемента используется электромагнит.
По роду тока контакторы подразделяются на контакторы постоянного и переменного тока, причем контакторы постоянного тока выполняются одно- и двухполюсными, а контакторы переменного тока выполняются двух- и трехполюсными. Втягивающая катушка электромагнита у контакторов постоянного тока питается постоянным током, а у контакторов переменного тока — переменным током.
По исполнению контактной системы контакторы подразделяются на нормально открытые (н. о.) и нормально закрытые (н. з.). Помимо главных контактов, используемых в силовых цепях для непосредственного включения электродвигателей, у контакторов имеются еще вспомогательные или блок-контакты, предназначенные для различных переключений в цепях управления.
Магнитные пускатели
Магнитные пускатели переменного тока состоят из одного или двух трехполюсных контакторов, смонтированных на общей панели. В большинстве случаев пускатели снабжены также встроенными тепловыми реле. Магнитные пускатели применяются в основном для пуска асинхронных короткозамкнутых электродвигателей без применения пусковых сопротивлений.
Магнитный пускатель с одним контактором является нереверсивным и служит для пуска, защиты двигателя от тепловых перегрузок и защиты от самопроизвольного пуска двигателя при временном исчезновении напряжения в питающей сети. Магнитный пускатель с двумя контакторами называется реверсивным и служит для обеспечения изменения направления вращения двигателя при автоматическом управлении.
Реверсивный магнитный пускатель также осуществляет защиту двигателя от перегрузок и самопроизвольного пуска двигателя при временном исчезновении напряжения в питающей сети.
При исчезновении напряжения в сети втягивающая катушка электромагнита контактора или магнитного пускателя обесточивается, якорь при этом отпадает и размыкает контакты, подключающие электродвигатель к сети. При появлении напряжения контактор не сработает, так как для этого необходимо нажать пусковую кнопку.
Реле
Аппарат, предназначенный для приведения в действие какого-либо мощного устройства или для регулирования какого-либо процесса при воздействии на него относительно малой мощности, называется реле.
Отличительной особенностью реле является то, что при воздействии на него какой-то мощности, называемой входной величиной, выходная величина его, служащая для указанных выше целей, изменяется скачком, достигая определенного значения.
По виду применяемой для их действия энергии реле можно разделить на электрические и неэлектрические. По своему назначению применяемые в схемах металлорежущих станков реле делятся на реле защиты и управления. Первые служат для обеспечения защиты различных цепей от появления ненормальных режимов работы (понижения напряжения, превышения тока и т. п.), вторые — для переключения различных цепей с целью осуществления определенной последовательности выполнения операций управления.
По способу включения в электрическую цепь электрические защитные реле, в свою очередь, разделяются на первичные, включаемые непосредственно в защищаемую цепь, и вторичные, включаемые в защищаемую цепь через трансформаторы тока и напряжения. В схемах металлорежущих станков применяются в основном первичные реле, так как напряжение на их зажимах не превышает 500 в, а токи в их цепи не превышают 100 а.
По способу действия реле делятся на реле прямого действия, непосредственно воздействующие на отключающие устройства, и реле косвенного действия, воздействующие на цепь управления вспомогательным током, который называется оперативным. В качестве источника оперативного тока могут быть использованы: междуфазное напряжение, напряжение между фазой и нулем, трансформаторы тока или напряжения, выпрямители.
Работу реле характеризуют следующие параметры:
1) величина срабатывания — значение входной величины, при котором реле переходит из состояния покоя в состояние срабатывания, при котором выходная величина реле достигает определенного значения и далее остается на этом уровне;
2) величина отпускания — значение входной величины, при котором реле переходит в состояние покоя;
3) время срабатывания ~- время, в течение которого реле переходит из состояния покоя в состояние срабатывания;
4) время отпускания — время, в течение которого реле переходит из состояния срабатывания в состояние покоя.
По последним двум параметрам различают реле мгновенного действия, время срабатывания и отпускания которых не превышает 0,1—0,15 сек, и реле времени, у которых эти параметры могут меняться в пределах от 0,1 секи более. В этом случае употребляется термин «выдержка времени реле». Выдержка времени обычно регулируется.