Системная часть программного обеспечения реализует также полный набор операций для управления сетевым взаимодействием узлов системы. Реализация сетевым протоколом LONWORKS функций управления конфигурацией сети, предоставляет возможность вынесения задач управления локальной сетью на отдельный уровень, обеспечиваемый, независимыми от особенностей построения отдельных узлов, аппаратно-программными средствами.
Прикладная часть программного обеспечения строится разработчиком узла и определяет набор задач по обслуживанию связанных с функционированием узла процедур регистрации данных и управления исполнительными устройствами. На нижнем уровне систем автоматизации, построенных по стандарту LONWORKS, определяется набор входных и выходных сетевых переменных, необходимых для функционирования конкретного узла и реализации его сетевых функций. При проектировании прикладного программного обеспечения, описание сетевых переменных отдельного узла определяется либо непосредственно в самодокументированной секции энергонезависимой памяти микроконтроллера, либо описание их мнемонических имен, типов и разрядности записывается в специальный внешний файл описания интерфейса проектируемого узла. Описание сетевых интерфейсных функций узла применяется на этапе построения связей сетевых переменных.
При использовании в качестве микроконтроллера узла модели NEURON3150 и внешней памяти программ типа FLASH, допускается загрузка прикладной части программного обеспечения узла по сети LONWORKS. Данная функция предоставляет возможность гибкого управления узлом без его демонтажа из системы.
Разработка прикладного уровня программного обеспечения производится с применением специального языка программирования NEURON-C (специальной реализации языка C). C уровня прикладного программного обеспечения допускается использование (вызовов) всех функций, предоставляемых системной частью программного обеспечения.
Для разработки узлов, построенных на базе NEURON, применяются специальные аппаратно-программные отладочные комплексы LONBUILDER и NODEBUILDER, производимые фирмой Echelon.
LONBUILDER, представляет собой крейт, содержащий в себе блок питания, интерфейс для связи с компьютером и имеющий 7 слотов для установки эмуляционных модулей. LONBUILDER позволяет с помощью устанавливаемых в него модулей производить отладку:
1. прикладного программного обеспечения модулей разработанных пользователем на основе различных NEURON-контроллеров,
2. объединять несколько эмуляционных модулей в сеть Echelon .для отладки сетевых взаимодействий,
3. с помощью роутер-модуля осуществлять объединение действующей и проектируемой сетей,
4. объединять узлы ECHELON в сети различных типов,
а также LONBUILDER может быть использован, в качестве шлюза-маршрутизатора сети ECHELON, с возможностью каскадирования отдельных крейтов LONBUILDER. Таким образом, LONBUILDER является мощнейшим средством отладки не только непосредственно прикладного программного обеспечения конкретного модуля, но и полноценным эмулятором сети ECHELON, а учитывая его широкие возможности при построении реальной сети его цена перестает быть столь пугающе высокой (от 24 тысяч долларов США в базовой поставке, состоящей из LONBUILDER, 2-х эмуляторов NEURON 3150, служебного модуля LONBUILDER, роутера, РС-карты, программного обеспечения и комплекта проводов).
Уровень сопряжения узлов нижнего уровня системы автоматизации с устройствами верхнего уровня предполагает использование специализированного программного обеспечения для организации взаимодействия узлов микроконтроллерной сети. Как правило, устройство управления локальной сетью организуется на базе персонального компьютера, содержащего устройство сопряжения с сетью в стандарте LONWORKS. С уровня подобного компьютера возможно обеспечить управление связыванием выходных и входных переменных отдельных узлов нижнего локальной сети и осуществлять общие функции управления сетью, предусматривающие идентификацию узлов, определение и управление их статусом в локальной сети, тестирование сетевых переменных каждого из узлов.
Структура связей сетевых переменных узлов локальной сети, и определенное при конфигурации сети состояние каждого из узлов, записывается как в энергонезависимую память узлов, так и в базу данных компьютера-конфигуратора сети.
Необходимо отметить, что протокол LONWORKS предусматривает специальные функции по защите данных и их кодированию при передаче между узлами сети. Эти функции обеспечивают надежность передачи информации и невозможность несанкционированной замены узлов локальной сети.
На рисунке 1-16 указана структура обмена данными между нейрочипами типа SLAVEA и MASTERA. На данном рисунке изображены три нейрочипа MASTERA, но для обработки в нашем случае достаточно и одного.
Для сопряжения нижнего уровня локальной сети, построенной на базе стандарта LONWORKS, c уровнем компьютерных станций могут быть применены платы и автономные устройства, промышленно выпускаемые фирмами, поддерживающими данный стандарт. Так фирма IEC (США) производит автономный сервер данных (Datalogger), реализованный на базе PC-104 и оснащенный интерфейсной платой для взаимодействия с сетью, выполненной на базе микроконтроллера NEURON.
При организации работы станций верхнего уровня систем автоматизации, базируемых на стандарте LONWORKS, может применяться как коммерческое, например, производимое фирмой IEC, так или же специализированное программное обеспечение разработанное отдельными пользователями для решения конкретных задач (например, MIMS, разработанное Sandia National Laboratories).
1. Постановка задачи
1.1. Обзор литературы и предлагаемые методы решения.
В связи с тем, что первый нейрочип был произведен в середине 1999 года, то количество литературы описывающей работу нейрочипа ограничено. Отечественных книг еще не написано, используются только переводы зарубежных авторов. Так наиболее подходящей книгой для реализации данного задания является книга немецкого автора Дитрих – Лой – Швайнцер «Lon технология». В этой книге есть как структурная, функциональная, так и программная реализация работы нейрочипа. Внутренней, электрической схемы нейрон чипа найдено не было по ранее описанным обстоятельствам и в связи авторским патентом выданным в США (USApatent № DC1233 -10 1999) о авторских правах на реализацию нейрочипа. Поэтому приведенная в приложении №1 схема является лишь примерной функциональной - электрической схемой, т.е. изображены внешние выводы микросхем, но а внутренней структуре умалчивается.
Методов реализации поставленной задачи в нашем случае может быть довольно много. Это обусловлено тем, что элементная база достаточно разнообразна и постоянно усовершенствуется. Так, например, на данный момент существует порядка 15 видов нейрочипов, со встроенной и внешней памятью, работающих на разных частотах, различным количеством выводов и разной формой, размером микросхем.
По заданию необходимо реализовать сеть на основе нейрочипа для обработки данных поступающих с аэродинамических датчиков подсчета скорости ветра. Т.к. данная сеть должна состоять из двух основных частей: разветвленной сети датчиков (каждый элемент состоит датчика + обрабатывающий нейрочип) и центрального процессора ( пороговый нейрочип + шина передачи данных в компьютер ), то тип нейрочипов и внешних устройств выбран оптимально из условия обеспечения их следующими компонентами:
1) напряжение питания : +(5-12)В
2) место размещения : объемом 30х20х7 (см3)
3) вибрационная устойчивость
Исходя из данных требований был выбран следующий тип нейрочипов, преобразующих устройств и устройств сопряжения: нейрон чип SLAVEAMC143120 32-LEDSOG , нейрон чип MASTERAMC143120 32-LEDSOG, преобразующее устройство MS555, устройство сопряжения MC145407.
1.2. Анализ задания.
В соответствии с заданием необходимо обработка информации поступающей с аэродинамических датчиков (датчики анализа скорости ветра) и передача поступающей информации по сети в ЭВМ, сеть реализовать на основе нейрочипа. Исходя из этого наше устройство будет состоять из двух глобальных частей: часть относящаяся к датчику SLAVEABLOCK, и часть относящаяся к ЭВМ MASTERABLOCK. Первый блок будет состоять из преобразующего чипа «555», который преобразовывает аналоговый электрический сигнал в прямоугольный импульсный сигнал. Далее сигнал поступает на вход NCSLAVEA, где производится подсчет количества импульсов в определенный промежуток времени, т.о. частота импульсов соответствует скорости ветра. После подсчета данные вместе с номером нейрочипа (каждый чип имеет свой индивидуальный номер, который зашивается в нем при производстве) попадают в устройство сопряжения NC с линией передачи. Затем через линию связи, в нашем случае это RS232C, преобразовавшись снова в устройстве сопряжения информация поступает в NCMASTERA, в котором она обрабатывается и если скорость ветра содержащаяся в данном пакете информации превышает допустимый порог в 50м/с, то пакет дополняется данными ( время получения пакета нейрочипом MASTERA : часы, минуты), и снова через устройство сопряжения передается в центральную ЭВМ по линии связи RS232C. Т.о. в ЭВМ будет получен пакет содержащий данные о скорости ветра, местоположении датчика ( которое будет определено по номеру нейрочипа), и времени получения данной информации. Обновление информации происходит каждые 100мкС ( причем данный параметр является установочным, т.е. его можно изменить при перепрограммировании нейрочипа MASTERA.