3.4.2. Контроль PMD в процессе эксплуатации ВОСП.
После прокладки кабеля многие параметры, в том числе и PMD, могут по ряду причин (деформации волокна, температурные изменения, натяжение и т.д.) испытывать отклонения от паспортных данных. Это требует проведения измерений PMD оптических волокон после инсталляции волоконно-оптической кабельной системы. Также в процессе эксплуатации следует проводить регулярные проверки параметра PMD. Для сложных линий с большим числом последовательных сегментов волоконно-оптических кабелей следует проводить тестирование PMD и отдельных сегментов. Если линия состоит из N сегментов ВОК, дисперсия в каждом из которых равна
, то результирующая поляризационная модовая дисперсия определяется из выражения в соответствии с законом суммы независимых случайных величин [5]: (3.4.7)Исследуем на простом примере. Пусть линия состоит из девяти сегментов, восемь из которых имеет
= 0,2 пс/км1/2 и один = 2,0 пс/км1/2. Результирующая такой линии равна 2,078 пс/км1/2. Если же все девять сегментов имеют = 0,2 пс/км1/2, то результирующая будет равна 0,6 пс/км1/2. Это означает, что все сегменты должны тестироваться, чтобы исключить возможность резкого влияния низких характеристик одного сегмента на линию в целом [4].В настоящее время предложено и исследовано большое количество способов компенсации дисперсии. Их можно разделить на следующие три класса [7]:
- способы компенсации дисперсии, основанные на управлении пространственным распределением дисперсии волоконно-оптической линии связи (ВОЛС) для обеспечения нулевого суммарного (интегрального) значения дисперсии для всей линии;
- способы компенсации дисперсии, основанные на управлении передатчиком или приемником излучения;
- способы компенсации дисперсии, использующие нелинейные оптические эффекты для управления пространственно - временными характеристиками светового импульса.
Принцип компенсации дисперсии, основанный на управлении пространственным распределением дисперсии волоконно-оптической линии связи заключается в том, что в ВОЛС между участками телекоммуникационного волокна устанавливаются устройства, дисперсия которых равна по величине и противоположна по знаку дисперсии предшествующего им участка телекоммуникационного ОК. Можно рассматривать хроматическую дисперсию как фазовый сдвиг между разными длинами волн сигнала. В компенсирующем волокне фазовый сдвиг постоянен, что предполагает только статический метод компенсации. В идеальном случае фазовый сдвиг спектральных компонент полностью компенсируется в устройстве - компенсаторе хроматической дисперсии. Этот принцип поясняет рис. 4.1.
Рис. 4.1. Применение устройства компенсации дисперсии
Большинство типов телекоммуникационного волокна в рабочей области спектра обладает положительной дисперсией, поэтому для их компенсации используются устройства с отрицательной дисперсией.
Наиболее распространенными устройствами для компенсации дисперсии ВОЛС являются:
- отрезки компенсирующего дисперсию волокна (DCF);
- устройства на основе брэгговских дифракционных решеток с изменяющимся периодом решетки;
- интерферометрические устройства.
Класс устройств, основанных на управлении пространственным распределением дисперсии волоконно-оптической линии связи для обеспечения нулевого суммарного значения дисперсии для всей линии, является наиболее удобным и находит наибольшее практическое применение.
Ко второму классу относятся устройства, использующие либо модуляцию передаваемого сигнала, либо специальную обработку сигналов на фотоприемнике для восстановления информации. Наиболее широко в этом классе применяются устройства компенсации дисперсии, основанные на внесении линейной частотной модуляции передаваемого сигнала (чирпировании сигнала), знак которой противоположен модуляции, возникающей в ОВ.
К классу нелинейно-оптических методов компенсации хроматической дисперсии относится инверсия спектра световых сигналов в середине линии связи. Принцип работы инверторов спектра основан на явлении обращения волнового фронта (ОВФ), которое заключается в преобразовании одной волны в другую с идентичным распределением амплитуды и фазы и с противоположным направлением распространения. ОВФ получают методом четырехволнового смешения [8]. В этом методе в нелинейной среде интерферируют четыре световых пучка. Три из них подаются извне: объектный пучок, который требуется обратить, и две опорные волны. Опорные пучки, распространяющиеся навстречу друг другу, имеют обычно плоский волновой фронт и одинаковую частоту, ту же, что и объектный пучок. Объектный пучок может направляться в среду с любого направления. Четвертый — генерируемый пучок — обращен по отношению к объектному. В результате прохождения устройства инверсии импульс сохраняет свою форму, но передний фронт становится длинноволновым, а задний фронт – коротковолновым. Инвертор устанавливается в середине линии связи, поэтому из-за дисперсии во второй половине линии восстанавливается первоначальная форма оптического импульса.
4.1.1. Оптическое волокно, компенсирующее дисперсию.
Оптическое волокно с компенсацией дисперсии является основным компонентом при статическом подавлении хроматической дисперсии. Его отрицательная хроматическая дисперсия в несколько раз превышает положительную хроматическую дисперсию одномодового волокна. Добавление участка волокна с компенсацией дисперсии определенной длины компенсирует дисперсию линии передачи, обращая ее в ноль. Отрицательная дисперсия, как правило, обеспечивается уменьшением диаметра сердцевины и слабым волноводным распространением. К сожалению, недостатком таких волокон со слабым каналированием света является увеличение затухания и потерь на изгибы.
Один из недостатков использования волокна DCF для компенсации дисперсии заключается в волновой зависимости хроматической дисперсии D(l). В линейном приближении эту зависимость описывает параметр S - наклон дисперсионной кривой. Компенсация дисперсии, например, статическим методом на одной длине волны приведет к неточной компенсации на других длинах волн в системах DWDM.
Для количественного сравнения качества компенсации дисперсии часто используют понятие добротности компенсирующего волокна
[7]. Добротностью компенсирующего волокна называется отношение абсолютного значения дисперсии, выраженного в пс/нм/км к затуханию, выраженному в дБ/км. Добротность не единственный показатель качества компенсирующего дисперсию волокна. Необходимо учитывать, в частности, насколько высока чувствительность к потерям на изгибах. Поэтому, при использовании значения добротности для сравнения различных видов оптических волокон нужно стремиться к тому, чтобы измерять добротность в тех условиях, в которых ОВ будет реально работать.Оптические волокна DCF с высоким показателем добротности используются как дополнительные элементы линии связи, они увеличивают потери в линии, примерно, на 30%. Так, для пролета длиной 300 км может потребоваться около 50 км волокна с компенсацией дисперсии, при этом дополнительные потери мощности составят 18 дБ.
Для компенсации дисперсии применяется также новый тип ОВ, названного оптическим волокном с обратной дисперсией (RDF). Волокно RDF обладает коэффициентом дисперсии примерно равным по величине и противоположным по знаку соответствующему параметру стандартного одномодового волокна. Измеренное значение потерь на изгиб в RDF волокне оказалось меньше, чем в стандартном ОВ. Это позволяет изготавливать оптические кабели с RDF волокном. Кабель на основе RDF волокна соединяется с ОК на основе стандартного ОВ примерно той же длины. Дисперсионный коэффициент такого соединения не превышает ±0,5пс/нм/км в полосе длин волн 1530нм - 1564нм. Поскольку затухание RDF волокна 0,25 дБ/км при затухании стандартного волокна 0,2 дБ/км, среднее затухание в линии равно 0,225 дБ/км. Еще одним преимуществом RDF волокна является меньшая по сравнению с DCF нелинейность.
Рассмотренные выше различные типы компенсирующих дисперсию волокон позволяют достаточно хорошо компенсировать дисперсию и наклон дисперсионной зависимости стандартного оптического волокна (SMF).
В настоящее время в большинстве модулей компенсации дисперсии используется DC волокно, т.к. такие модули не потребляют мощность, имеют малую стоимость и удобны в применении (обычно размещается на выходе оптического усилителя).
4.1.2. Компенсаторы на основе брэгговских решеток с переменным периодом.
Компенсаторы на основе брэгговских решеток с переменным периодом привлекают в последнее время большое внимание исследователей своими большими потенциальными возможностями. Волоконная брэгговская решетка FBG (fiber Bragg grating) - оптический элемент, основанный на периодическом изменении показателя преломления сердцевины или оболочки оптического волокна. Принцип работы компенсаторов на основе брэгговских решеток с переменным периодом поясняет рис. 4.3. Он основан на том, что компоненты с различной длиной волны отражаются от различных участков решетки и, таким образом, проходят различный путь. Решетки записываются (прочерчиваются) в волокне с использованием фоточувствительности определенных типов оптических волокон. Обычное кремниевое волокно при добавлении примеси германия становится чрезвычайно фоточувствительным. Подвергая это волокно воздействию ультрафиолетового света, можно вызвать изменения показателя преломления в сердцевине волокна. В таком волокне решетка может быть создана с помощью облучения волокна двумя интерферирующими ультрафиолетовыми пучками. Это заставляет интенсивность излучения изменяться периодически по длине волокна. Там, где интенсивность высокая, показатель преломления увеличивается, а где она мала, показатель остается без изменений [4].