Смекни!
smekni.com

Системный анализ и проблемы принятия решений (стр. 2 из 5)

Наряду с основной задачей — обоснованием оптимальных реше­ний — к области исследования операций относятся и другие задачи, такие как

— сравнительная оценка различных вариантов организации опе­рации;

— оценка влияния на результат операции различных параметров (элементов решения и заданных условий);

— исследование так называемых «узких мест», то есть элементов управляемой системы, нарушение работы которых особенно сильно сказывается на успехе операции, и т. д.

Эти «вспомогательные» задачи исследования операций приобре­тают особую важность, когда мы рассматриваем данную операцию не изолированно, а как составной элемент целой системы операций. Так называемый «системный» подход к задачам исследования операций требует учета взаимной зависимости и обусловленности целого ком­плекса мероприятий. Разумеется, в принципе всегда можно объеди­нить систему операций в одну сложную операцию более «высокого по­рядка», но на практике это не всегда удобно (и не всегда желательно), и в ряде случаев целесообразно выделять в качестве «операций» от­дельные элементы системы, а окончательное решение принимать с уче­том роли и места данной операции в системе.

Итак, рассмотрим отдельную операцию О. Размышляя над ор­ганизацией операции, мы стремимся сделать ее наиболее эффективной. Под эффективностью операции разумеется степень ее при­способленности к выполнению стоящей перед ней задачи. Чем лучше организована операция, тем она эффективнее.

Чтобы судить об эффективности операции и сравнивать между со­бой по эффективности различно организованные операции, нужно иметь некоторый численный критерий оценки или пока­затель эффективности (в некоторых руководствах пока­затель эффективности называют «целевой функцией»).

Будем в дальнейшем обозначать показатель эффективности буквойW.

Конкретный вид показателя эффективности W, которым следует пользоваться при численной оценке эффективности, зависит от спе­цифики рассматриваемой операции, ее целевой направленности, а так­же от задачи исследования, которая может быть поставлена в той или другой форме.

Многие операции выполняются в условиях, содержащих элемент случайности (например, операции, связанные с колебаниями спроса и предложения, с движением народонаселения, заболеваемостью, смертностью, а также все военные операции). В этих случаях исход операции, даже организованной строго определенным образом, не мо­жет быть точно предсказан, остается случайным. Если это так, то в ка­честве показателя эффективности W выбирается не просто характерис­тика исхода операции, а ее среднее значение (математическое ожида­ние). Например, если задача операции — получение максимальной прибыли, то в качестве показателя эффективности берется средняя прибыль. В других случаях, когда задачей операции является осуществление вполне определенного события, в качестве показателя эффективности берут вероятность этого события (например, ве­роятность того, что в результате воздушного налета данная группа целей будет поражена).

Правильный выбор показателя эффективности — необходимое условие полезности исследования, применяемого для обоснования ре­шения.

Рассмотрим ряд примеров, в каждом из которых показатель эф­фективности W выбран в соответствии с целевой направленностью опе­рации.

Пример 1. Рассматривается работа промышленного предприятия под углом зрения его рентабельности, причем проводится ряд мер с целью повышения этой рентабельности Показатель эффективности — прибыль (или средняя прибыль), приносимая предприятием за хозяйственный год

Пример 2 Группа истребителей поднимается в воздух для перехвата оди­ночного самолета противника Цель операции — сбить самолет. Показатель эф­фективности — вероятность поражения (сбития) самолета

Пример 3. Ремонтная мастерская занимается обслуживанием машин; ее рентабельность определяется количеством машин, обслуженных в течение дня. Показатель эффективности — среднее число машин, обслуженных за день («сред­нее» потому, что фактическое число случайно)

Пример 4. Группа радиолокационных станций в определенном районе ве­дет наблюдение за воздушным пространством. Задача группы — обнаружить любой самолет, если он появится в районе Показатель эффективности — ве­роятность обнаружения любого самолета, появившегося в районе.

Пример 5. Предпринимается ряд мер по повышению надежности электрон­ной цифровой вычислительной машины (ЭЦВМ). Цель операции — уменьшить частоту появления неисправностей («сбоев») ЭЦВМ, или, что равносильно, уве­личить средний промежуток времени между сбоями («наработку на отказ»). По­казатель эффективности — среднее время безотказной работы ЭЦВМ (или сред­нее относительное время исправной работы).

Пример 6. Проводится борьба за экономию средств при производстве опре­деленного вида товаров. Показатель эффективности—количество (или среднее количество) сэкономленных средств.

Во всех рассмотренных примерах показатель эффективности, ка­ков бы он ни был, требовалось обратить в максимум («чем больше, тем лучше»). Вообще, это не обязательно: в исследовании операций часто пользуются показателями, которые требуется обратить не в максимум, а в минимум («чем меньше, тем лучше»). Например, в примере 4 можно было бы в качестве показателя эффективности взять «вероятность тоге, что появившийся самолет не будет обнаружен» — этот показатель же­лательно сделать как можно меньше. В примере 5 за показатель эф­фективности можно было бы принять «среднее число сбоев за сутки», которое желательно минимизировать. Если оценивается какая-то система, обеспечивающая наведение снаряда на цель, то в качестве по­казателя эффективности можно выбрать среднее значение «промаха» снаряда (расстояния от траектории до центра цели), которое желательно сделать как можно меньше. Наряд средств, выделяемых на выполнение какой-либо задачи, тоже желательно сделать минимальным, равно как и стоимость предпринимаемой системы мероприятий. Таким образом, во многих задачах исследования операций разумное решение должно обеспечивать не максимум, а минимум некоторого показателя.

Очевидно, что случай, когда показатель эффективностиW надо обратить в минимум, легко сводится к задаче максимизации (для этого достаточно, например, изменить знак величины W). Поэтому в даль­нейшем, рассматривая в общем виде задачу исследования операций, мы будем для простоты говорить только о случае, когда W требуется об­ратить в м а к с и м у м. Что касается практических конкретных за­дач, то мы будем пользоваться как показателями эффективности, кото­рые требуется максимизировать, так и теми, которые требуется мини­мизировать.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПЕРАЦИИ

Для применения количественных методов исследования в любой области всегда требуется построить ту или другую математическую модель явления. Me составляет исключения и исследование опе­раций. При построении математической модели явление (в нашем слу­чае — операция) каким-то образом упрощается, схематизируется; из бесчисленного множества факторов, влияющих на явление, выделяется сравнительно небольшое количество важнейших, и полученная схема описывается с помощью того или другого математического аппарата. В результате устанавливаются количественные связи между условиями операции, параметрами решения и исходом операции — показателем эффективности (или показателями, если их в данной задаче несколько).

Чем удачнее подобрана математическая модель, тем лучше она отражает характерные черты явления, тем успешнее будет исследова­ние и полезнее — вытекающие из него рекомендации.

Общих способов построения математических моделей не сущест­вует. В каждом конкретном случае модель строится, исходя из целевой направленности операции и задачи научного исследования, с учетом требуемой точности решения, а также точности, с какой могут быть известны исходные данные.

Требования к модели противоречивы. С одной стороны, она долж­на быть достаточно полной, т. е. в ней должны быть учтены все важные факторы, от которых существенно зависит исход операции. С дру­гой стороны, модель должна быть достаточно простой для того, чтобы можно было установить обозримые (желательно— аналитические) зависимости между входящими в нее параметрами. Модель не должна быть «засорена» множеством мелких, второстепенных факторов — их учет усложняет математический анализ и делает результаты исследо­вания трудно обозримыми.

Одним словом, искусство составлять математические модели есть именно искусство, и опыт в этом деле приобретается постепенно. Две опасности всегда подстерегают составителя модели: первая - утонуть в подробностях («из-за деревьев не увидеть леса»); вторая - слишком огрубить явление («выплеснуть из ванны вместе с водой и ре­бенка»). В сложных случаях, когда построение модели вызывает наи­большее сомнение, полезным оказывается своеобразный «спор моделей», когда одно и то же явление исследуется на нескольких моделях. Если научные выводы и рекомендации от модели к модели меняются мало, это — серьезный аргумент в пользу объективности исследования. Характерным для сложных задач исследования операций являет­ся также повторное обращение к модели: после того, как первый цикл исследований выполнен, возвращаются снова к модели и вносят в нее необходимые коррективы.

Построение математической модели — наиболее важная и ответственная часть исследования, требующая глубоких знаний не только и не столько в математике, сколько в существе моделируемых явлений. Однако раз созданная удачная модель может найти применение и далеко за пределами того круга явлений, для которого она перво­начально создавалась. Так, например, математические модели массо­вого обслуживания нашли широкое применение в целом ряде облас­тей, далеких, с первого взгляда, от массового обслуживания (надеж­ность технических устройств, организация автоматизированного про­изводства, задачи ПВО и др.). Математические модели, первоначаль­но предназначенные для описания динамики развития биологических популяций, находят широкое применение при описании боевых дейст­вий и наоборот — боевые модели с успехом применяются в биологии.