Смекни!
smekni.com

Квантовые компьютеры (стр. 4 из 4)

Пытаясь осуществить свой за­мысел, ученые упираются в про­блему сохранения когерентности волновых функций кубитов, так как потеря когерентности хотя бы од­ним из кубитов разрушила бы ин­терференционную картину. В на­стоящее время основные усилия экспериментальных рабочих групп направлены на увеличение отно­шения времени сохранения коге­рентности ко времени, затрачивае­мому на одну операцию (это отно­шение определяет число операций, которые можно успеть провести над кубитами). Главной причиной по­тери когерентности является связь состояний, используемых для ку­битов, со степенями свободы, не участвующими в вычислениях. На­пример, при передаче энергии элек­трона в возбужденном атоме в по­ступательное движение всего ато­ма. Мешает и взаимодействие с ок­ружающей средой, например, с со­седними атомами материала ком­пьютера или магнитным полем Зем­ли, но это не такая важная проблема. Вообще, любое воздействие на ко­герентную квантовую систему, ко­торое принципиально позволяет получить информацию о каких-ли­бо кубитах системы, разрушает их когерентность. Потеря когерентно­сти может произойти и без обмена энергией с окружающей средой.

Воздействием, нарушающим когерентность, в частности, явля­ется и проверка когерентности. При коррекции ошибок возникает сво­его рода замкнутый круг: для того чтобы обнаружить потерю коге­рентности, нужно получить ин­формацию о кубитах, а это, в свою очередь, также нарушает когерент­ность. В качестве выхода предло­жено много специальных методов коррекции, представляющих так­же и большой теоретический инте­рес. Все они построе­ны на избыточном кодировании.

Если в области передачи инфор­мации уже созданы реально рабо­тающие системы и до коммерческих продуктов осталось лишь несколько шагов, то коммерческая реализация квантового когерентного процессо­ра - дело будущего. К настоящему времени КК научился вычислять сум­му 1+1! Это большое достижение, если учесть, что в виде результата он выдает именно 2, а не 3 и не 0. Кроме того, не следует забывать, что и пер­вые обычные компьютеры были не особенно мощны.

Сейчас ведется работа над дву­мя различными архитектурами процессоров: типа клеточного ав­томата и в виде сети логических элементов. Пока не известно о ка­ких-либо принципиальных пре­имуществах одной архитектуры перед другой. Как функциональ­ная основа для логических эле­ментов квантового процессора бо­лее или менее успешно использу­ется целый ряд физических явле­ний. Среди них - взаимодействие одиночных поляризованных фо­тонов или лазерного излучения с веществом или отдельными ато­мами, квантовые точки, ядерный магнитный резонанс и - наибо­лее многообещающий - объем­ный спиновый резонанс. Процессор, постро­енный на последнем принципе, в шутку называют «компьютером в чашке кофе» - из-за того, что в нем работают молекулы жидкости при комнатной температуре и ат­мосферном давлении. Кроме этих эффектов есть довольно хорошо развитая технология логических элементов и ячеек памяти на джозефсоновских переходах, которую можно при соответствующих ус­ловиях приспособить под коге­рентный процессор.

Теорию, описывающую явле­ния, лежащие в основе первого типа логических ячеек, называют квантовой электродинамикой в по­лости или резонаторе. Кубиты хра­нятся в основных и возбужденных состояниях атомов, расположен­ных некоторым образом на равных расстояниях в оптическом резона­торе. Для каждого атома исполь­зуется отдельный лазер, приводя­щий его в определенное состояние с помощью короткого импульса. Взаимовлияние атомных состоя­ний происходит посредством об­мена фотонов в резонаторе. Ос­новными причинами разрушения когерентности здесь служат спон­танное излучение и выход фото­нов за пределы резонатора.

В элементах на основе ионов в линейных ловушках кубиты хра­нятся в виде внутренних состояний пойманных ионов. Для управле­ния логикой и для манипулирова­ния отдельными кубитами также используются лазеры. Унитарные преобразования осуществляются возбуждением коллективных кван­тованных движений ионов. Источ­никами некогерентности является спонтанный распад состояний ио­нов в другие внутренние состояния и релаксация в колебательные сте­пени свободы.

Сильно отличается от двух пре­дыдущих «компьютер в чашке ко­фе». Благодаря достоинствам данного метода этот ком­пьютер является наиболее реаль­ным претендентом на то, чтобы достигнуть разрядности 10 бит в бли­жайшее время. В компьютере на кол­лективном спиновом резонансе ра­ботают молекулы обычных жидко­стей (без всяких квантовых вывертов типа сверхтекучести). В качестве ку­битов используется ориентация ядерных спинов. Работа логических ячеек и запись кубитов осуществля­ется радиочастотными электромаг­нитными импульсами со специаль­но подобранными частотой и фор­мой. В принципе, прибор похож на обычные приборы ядерного маг­нитного резонанса (ЯМР) и исполь­зует аналогичную аппаратуру. Жиз­неспособность этого подхода обес­печивается, с одной стороны, очень слабой связью ядерных спинов с окружением и, потому, большим временем сохранения когерентно­сти (до тысяч секунд). Эта связь ос­лаблена из-за экранирования ядер­ных спинов спинами электронов из оболочек атомов. С другой стороны, можно получить сильный выход­ной сигнал, так как для вычислений параллельно используется большое количество молекул. «Не так уж сложно измерить спин четвертого ядра у какого-то типа молекул, если у вас имеется около числа Авогадро (~1023) таких молекул», - говорит Ди Винченцо (Di Vincenzo), один из исследователей. Для определения результата непрерывно контроли­руют излучение всего ансамбля. Та­кое измерение не приводит к потере когерентности в компьютере, как было бы в случае использования толь­ко одной молекулы.

Ядерные спины в молекулах жидкости при комнатной темпера­туре хаотически разупорядочены, их направления равномерно рас­пределены от 0 до 4p. Проблема записи и считывания кажется не­преодолимой из-за этого хаоса. При воздействии магнитного поля спины начинают ориентироваться по полю. После снятия поля через небольшое время система снова приходит к термодинамическому равновесию, и в среднем лишь около миллионной доли всех спинов остается в состоянии с ориентацией по направлению поля. Однако бла­годаря тому, что среднее значение сигнала от хаотически направлен­ных спинов равно нулю, на этом фоне можно выделить довольно слабый сигнал от «правильных» спинов. Вот в этих-то молекулах с правильными ядерными спинами и размещают кубиты. Для коррек­ции ошибок при записи N кубитов используют2N или больше спинов. Например, дляN=1 выбираются такие жидкости, где какие-то два спина ядер в одной молекуле после опре­деленного воздействия полем мо­гут быть ориентированны только одинаково. Тогда по направлению второго спина при снятии резуль­тата обработки можно отсеять нуж­ные молекулы, никак не влияя на первый спин.

Как уже было сказано, обработ­ка битов осуществляется радиоим­пульсами. Основным логическим элементом является управляемый инвертор. Из-за спин-спинового взаимодействия резонансная час­тота, при которой происходит оп­рокидывание одного спина, зави­сит от направления другого.

Что касается квантовой передачи данных, к настоящему времени экспериментально реализованы системы обмена секретной информацией по незащищенному от несанкционированного доступа каналу. Они основаны на фундаментальном постулате квантовой механики о невоз­можности измерения состояния без оказания влияния на него. Подслушивающий всегда изменяет состояние кубитов, кото­рые он подслушал, и это может быть зафиксировано связы­вающимися сторонами. Данная система защиты информации абсолютно надежна, так как способов обойти законы кванто­вой механики пока еще никто не выдумал.

Вместо заключения…

Пока квантовым компьютерам по плечу только наиболее простые за­дачи - например, они уже умеют складывать 1 и 1, получая в резуль­тате 2. Было также запланировано взятие дру­гого важного рубежа - фактори­зации числа 15, его предстоит раз­ложить на простые множители - 3 и 5. А там, глядишь, дойдет дело и до более серьезных задач.

Опытные образцы сейчас со­держат менее десяти квантовых би­тов. По мнению Нейла Гершенфельда (Nell Gershenfeld), участвовав­шего в создании одной из первых действующих моделей квантового компьютера, необходимо объеди­нить не менее 50-100 кубитов, что­бы решать полезные с практиче­ской точки зрения задачи. Интерес­но, что добавление каждого сле­дующего кубита в квантовый ком­пьютер на эффекте объемного спи­нового резонанса требует увеличе­ния чувствительности аппаратуры в два раза. Десять дополнительных кубитов, таким образом, потребуютувеличения чувствительности в 1000 раз, или на 60 дБ. Двадцать - в миллион раз, или на 120 дБ...

He исключе­но, что в информационном обще­стве появление квантового компь­ютера сыграет ту же роль, что в свое время, в индустриальном, - изоб­ретение атомной бомбы. Действи­тельно, если последняя является средством «уничтожения мате­рии», то первый может стать сред­ством «уничтожения информа­ции» - ведь очень часто то, что известно всем, не нужно никому.

Литература, содержащая основную информацию о КК.

1. Feynman R. Int. J. Theor. Phys. 21, 1982.

2. Манин Ю.И. Вычислимое и невычислимое. - М.: Советское ра­дио, 1980.

3. Feynman R. Quantum mechanical computers. // Optics News, February 1985, 11, p.11.

4. Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. - Proc. R. Soc. London A 400, 97, 1985.

5. Deutsch D. Quantum computational networks. - Proc. R. Soc. London A 425, 73, 1989.

6. Yao А. С.-С. Quantum circuit complexity. //Proceedings of the 34th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1993, p. 352.

7. Shor P.W. Algorithms for Quantum Computation: Discrete log and Factoring. // Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser, IEEE Computer Society Press, Los Alamitos, CA, 1994, p.124.

8. Китаев A.Ю. Квантовые вычисления: алгоритмы и исправление ошибок. //Успехи математических наук.

9. Grover L. Afast quantum mechanical algorithm for database search. //Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp. 212-219.

10. Kitaev A.Yu. Quantum measurements and the Abelian stabilizer problem. - LANL e-print quant-ph/9511026, http://xxx.lanl.gov.

11. Shor P.W. Fault-Tolerant Quantum Computation. - LANL e-print quant-ph/9005011, http://xxx.lanl.gov.

12. Bennett С.Н., Bernstein E., Brassard G., Vazirany U. Strengths and Weaknesses of Quantum Computing. - LANL e-print quant-ph/9701001, http://xxx.lanl.gov, to appear in SIAM J. On Computing.