Смекни!
smekni.com

Архитектурные особенности и технические характеристики видеоадаптеров (стр. 9 из 13)

Режимы 0Dh и 0Еh. Разрешающая способность в режиме 0Dh составляет 320х200, а в режиме 0Eh 640х200 пикселов. Данный режим поддерживается только видеоадаптерами EGA и VGA Для хранения видеоданных используются все четыре цветовых слоя. Адресу видеопамяти

соответствуют четыре байта, которые вместе определяют восемь пикселов. Каждому пикселу соответствуют четыре бита -- по одному из каждого цветового слоя. Четыре бита на пиксел, используемые в данных режимах, позволяют отображать 16 различных цветов. Запись в каждый из этих цветовых слоев можно разрешить или запретить при помощи разрешения записи цветового слоя. Управление доступом к цветовым плоскостям осуществляется при помощи регистров: Адресный регистр графического контроллера, порт вывода для этого регистра 3CEh; биты 0--3

содержат адрес регистра, остальные не используются. Регистр цвета: для доступа к этому регистру значение адресного регистра должно быть 00h, адрес порта вывода для этого регистра 3CFh; биты 0--3 определяют значение для соответствующей плоскости, остальные не используются. Регистр разрешения цвета: для доступа к этому регистру значение адресного регистра должно быть 01h, адрес порта вывода для этого регистра 3CFh; биты 0--3 означают разрешение соответствующего слоя, а остальные не используются. Регистр выбора плоскости для чтения: для доступа к этому регистру значение адресного регистра должно быть 04h, адрес порта вывода для этого регистра 3CFh; биты 0--2 содержат номер плоскости для чтения, а остальные не используются.

Графический контроллер осуществляет обмен данными между видеопамятью и процессором. Он может выполнять над данными, поступающими в видеопамять, простейшие логические операции: И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ, циклический сдвиг. Таким образом, видеоадаптер может выполнять часть работы по обработке видеоданных. Хотя процессор может читать данные только из одного цветового слоя, запись данных в регистры-защелки происходит из всех цветовых слоев. Эту

особенность можно использовать для быстрого копирования областей экрана. Во время цикла чтения данных из видеопамяти , графический контроллер может выполнять операцию сравнения цветов. В отличие от обычной операции чтения. когда читается только один цветовой слой, при операции сравнения цветов графический контроллер имеет доступ ко всем четырем слоям одновременно. В

случае совпадения вырабатывается определенный сигнал.

Последовательный преобразователь. Это устройство запоминает данные, читаемые из видеопамяти в течении цикла регенерации, преобразует их в последовательный поток бит, а затем передает их контроллеру атрибутов.

Контроллер атрибутов. Контроллер атрибутов в графических режимах управляет цветами. Значениям цветовых атрибутов ставится в соответствие определенный цвет при помощи таблицы

цветовой палитры. Эта таблица ставит в соответствие четырем битам из видеопамяти шесть битов цветовой информации. Для ЕGA эта информация поступает непосредственно на дисплей, а для VGA -- преобразуется в соответствии с таблицей цветов тремя ЦАП в RGB-сигнал и передается на дисплей. Контроллер ЭЛТ выполняет следующие функции: вырабатывает сигналы управления

работой ЭЛТ, определяет формат экрана и символлов текста, определяет форму курсора, управляет световым пером, управляет скроллингом содержимого экрана. Синхронизатор управляет всеми временными парамет-рами видеоадаптера.

Особенности использования для разных задач пользователя

Двухпортовую видеопамять.

Двухпортовую видеопамять - графический процессор осуществляет чтение из видеопамяти или запись в нее через один порт, а RAMDAC осуществляет чтение данных из видеопамяти, используя второй независимый порт. В результате графическому процессору больше не надо ожидать, пока RAMDAC завершит свои операции с видеопамятью, и наоборот, RAMDAC больше не требуется ожидать, пока графический процессор не завершит свою работу с видеопамятью.

Такой тип памяти с двухпортовой организацией называется VRAM (Video RAM). На самом деле реализация этой технологии несколько сложнее, чем просто сделать два независимых порта для чтения и записи, поэтому производство такой памяти обходится не дешево. Зато это объясняет, почему видеоадаптеры, использующие VRAM, стоят так дорого и работают так быстро. Аналогичным образом устроена память WRAM (Window RAM), которая тоже является двухпортовой и применяется на видеплатах компании Matrox.
Эта память имеет лучшую организацию, благодаря чему она работает быстрее, чем VRAM. Видеоадаптеры, оснащенные двухпортовой памятью, обычно обеспечивают высокую частоту обновления экрана при высокой глубине представления цвета, что объясняется просто. Высокая частота регенерации экрана означает, что RAMDAC посылает в монитор полный образ изображения гораздо чаще, чем при более низких показателях частоты вертикальной развертки. Соответственно при этом RAMDAC необходимо чаще обращаться в режиме чтения к видеопамяти.

Такая возможность имеется при использовании видеопамяти типа VRAM/WRAM, за счет возможности обращения к памяти через второй порт. В случае же с обычной видеопамятью (типа FP DRAM/EDO DRAM) такой возможности нет, поэтому производительность видеоадаптера существенно ниже.

Все сказанное элементарно подтверждается тестами при их проведении с различными уровнями частоты регенерации (обновления) экрана. Аналогичная ситуация наблюдается и в случае использования режимов с высокой глубиной представления цвета. Например, при 8-битной глубине представления цвета (256 цветов) при разрешении 1024x768 RAMDAC должен считать из видеопамяти 786,432 байт данных, чтобы послать на монитор полный образ изображения. Если цвет имеет глубину представления 24 бит (16млн. цветов), то для отправки на монитор образа в таком же разрешении RAMDAC требуется считать из видеопамяти уже 2,359,296 байт, что, разумеется, занимает больше времени. Это, кстати, объясняет, почему, используя недорогие видеоадаптеры, нельзя использовать такую же высокую частоту обновления экрана в режиме True color, как и при меньшем количестве цветов.

Другим методом для увеличения производительности является увеличение ширины (разрядности) шины, через которую графический процессор и RAMDAC обмениваются данными с видеопамятью. Около четырех лет назад, когда появились первые 32-битные видеоадаптеры, они казались верхом совершенства.
Сегодня такие платы можно смело назвать раритетом. Эти карты имели 32-битную шину данных, соединяющую видеопамять с графическим процессором и RAMDAC. По 32-битной шине может за раз передаваться 4 байта данных. Впечатляюще? Несколько позднее появились 64 разрядные видеоадаптеры, которые могут передавать единовременно 8 байт, являющиеся на сегодня самыми распространенными. И только совсем недавно мы стали свидетелями массового появления графических адаптеров, в архитектуре которых применяется 128 разрядная шина, по которой за одну транзакцию передается 16 байт информации.
Нетрудно заметить, что видеоадаптеры, оснащенные 128-битной шиной и использующие видеопамять типа VRAM/WRAM, имеют наилучшие шансы для достижения максимальной производительности.

Но есть и ложка дегтя, как же без нее? Дело в том, что, как правило, микросхемы видеопамяти имеют организацию 8x1 Mbit, т.е. такую же, как и видеопамять на устаревших 32-разрядных видеоадаптерах. В итоге, даже в случае 128-разрядных плат, доступ к видеопамяти может осуществляться только с ограничением ширины потока данных в 32-бита. Кстати, именно этим фактом объясняется то, что 64-битные видеоадаптеры, имеющие на борту лишь 1Мб видеопамяти, работают медленнее, чем те же самые видеоплаты, но с 2Мб видеопамяти. Соответственно, 128-разрядные графические платы, использующие видеопамять со стандартной организацией, например Number Nine Imagine128 Series 2, для нормальной работы требуют 4Мб минимально установленного объема памяти для реализации возможностей 128-битной шины видеоданных. Не случайно, компания Tseng при разработке своего 128-разрядного графического процессора ET6000, выбрала для работы новый тип видеопамяти MDRAM (Multi bank DRAM) компании MoSys. Этот новый тип памяти имеет совершенно другую организацию, чем стандартная память DRAM. Используя методы чередования (интерливинга) и другие хитрости, при организации MDRAM удалось получить возможность использовать 2Мб видеопамяти на видеоадаптерах, построенных на основе ET6000. Но самым распространенным на сегодняшний день методом оптимизации работы видеоадаптеров является применение повышенной тактовой частоты, на которой работает графический процессор, видеопамять и RAMDAC, что позволяет увеличить скорость обмена информацией между компонентами платы.

Несколько лет назад графические процессоры работали с тактовой частотой, значения которой не превышали скорость работы шины системной памяти на материнской плате. Теперь ситуация изменилась, например, процессор Tseng ET6000 работает на тактовой частоте до 100MHz, но и процессоры от других производителей не отстают. Для работы на таких частотах требуется специальная видеопамять. Кроме MDRAM работать с высокой тактовой частотой может видеопамять типа SGRAM. На самом деле SGRAM - это просто версия SDRAM, рассчитанная для работы в качестве видеопамяти. Кстати, существующие микросхемы SGRAM могут работать на частотах до 125 MHz, чего вполне достаточно.

Выводы

Лучшим видеоадаптером для игр из числа протестированных оказалась плата Hercules Stingray 128/3D, занявшая в общем зачете девятое место. Она обеспечивает самый гладкий вывод VRML и 3D-игр, а также наилучшее качество отображения трехмерной графики среди всех протестированных графических адаптеров. Высокая 3D-производительность платы Stingray достигается за счет использования отдельной микросхемы, отвечающей за обработку трехмерной графики, и отдельного банка памяти, благодаря которому текстуры (например, под дерево) перемещаются в трехмерных сценах быстрее.