Смекни!
smekni.com

Да будет свет!: история искусственных источников света (стр. 1 из 2)

Дмитрий Мамонтов

Никогда еще маленький городок Менло-Парк не знал такого ажиотажа. В канун нового, 1880 года туда, казалось, съехалось население всего штата Нью-Джерси, а может быть, и нескольких соседних штатов. Пенсильванская железная дорога не справлялась с потоком желающих, и пришлось пустить дополнительные поезда. Люди приезжали с единственной целью – посмотреть на то, как сто электрических солнц, ламп накаливания, освещают станцию, улицы и лабораторию Эдисона.

Так началась эра массового электрического освещения

Разумеется, и до изобретения электрического освещения люди осознавали необходимость искусственного света и пытались «разгонять тьму». «Если у тебя спрошено будет: что полезнее, солнце или месяц? – ответствуй: месяц. Ибо солнце светит днем, когда и без того светло; а месяц – ночью», – говорил Козьма Прутков. Яркость солнечного света настолько велика, что очень мало искусственных источников света могут с ним соперничать. А вот ночью приходится довольствоваться жалким отражением солнечного света от лунной поверхности (и то не всегда). Вот и приходится человечеству изобретать заменители.

Дар Прометея

Первым искусственным источником света был огонь, который, как известно, был подарен человечеству Прометеем. В качестве стационарного источника света служил костер, в качестве переносных – факелы, конструкция которых со временем менялась: от простой головешки, вынутой из костра, до рукоятки, обмотанной паклей и пропитанной нефтью, жиром или маслом. Несмотря на то, что факел – очень древнее изобретение (считается, что ему около миллиона лет!), он применяется и поныне: его далекие потомки, работающие на газе, зажигают олимпийский огонь, а фальшфейеры и ракеты применяют для ночной маркировки и сигнализации военные, охотники и туристы.

Помимо факела в каменном веке человечество изобрело лампу – кувшин, наполненный жиром или маслом, с погруженным в него фитилем (веревочным или тканевым). В третьем тысячелетии до нашей эры появились первые свечи – бруски из перетопленного твердого животного жира (сала) с фитилем внутри. В средние века в качестве материала для свечей применяли китовый жир и пчелиный воск, в настоящее время для этих целей используется парафин.

Факелы, свечи и лампы дают очень слабый свет. Спектр открытого огня сильно отличается от солнечного, под который природа «заточила» человеческий глаз. Существенная часть излучения приходится на тепловой (ИК) диапазон. Видимый свет излучают в основном частицы углерода, нагреваемые пламенем до высокой температуры (как раз эти несгоревшие частицы и образуют копоть). Спектр огня в видимом диапазоне захватывает лишь часть желтой и красной области. Работать при таком свете практически невозможно, и многие средневековые ремесленные гильдии дальновидно запрещали работу по ночам при искусственном свете, так как качество изделий при этом резко падало.

Поддайте газу!

В XIX веке широкое распространение получило газовое освещение. В 1807 году первые газовые фонари зажигаются на одной из центральных улиц Лондона – Пэлл-Мэлл. А уже к 1823 году улицы Лондона, общей протяженностью 215 миль, освещали сорок тысяч газовых фонарей (которые было принято называть рожками). Зажигались они каждый вечер вручную специальными людьми – фонарщиками. Кстати, эта должность была в некоторых странах выборной и весьма почетной.

Однако газовое освещение было не слишком эффективным. Главная проблема заключалась в том, что газовое пламя, горящее при недостаточном притоке кислорода, дает яркий свет, но при этом сильно коптит, а чистое некоптящее пламя (при избытке кислорода) практически невидимо. Но в 1885 году Уэлсбах предложил использовать калильную сетку, представляющую собой мешочек из ткани, пропитанный раствором неорганических веществ (различных солей). При прокаливании ткань сгорала, оставляя тонкий «скелет», ярко светящийся при нагревании под действием пламени.

В конце XIX века появились керосиновые лампы, их можно встретить и до сих пор. Многие из них оснащены калильными сетками (теперь уже металлическими или асбестовыми).

Первые шаги электричества

Первым электрическим источником света был, как это ни странно, «фонарик на батарейках». Правда, свет излучала не лампа накаливания, а электрическая дуга между угольными электродами, а батареи занимали целый стол. В 1809 году сэр Хэмфри Дэви продемонстрировал дуговой свет в Королевской академии наук в Лондоне. Генераторов в то время не было (Фарадей открыл явление электромагнитной индукции лишь в 1832 году), и батареи были единственным источником электропитания.

В 1878 году наш соотечественник Павел Яблочков усовершенствовал конструкцию, поставив электроды вертикально и разделив их слоем изолятора. Такая конструкция получила название «свеча Яблочкова» и использовалась во всем мире: например, Парижский оперный театр освещался с помощью таких «свечей».

Электрическая дуга давала яркий и достаточно сбалансированный по спектру свет, что позволяло использовать его очень широко. К 1884 году крупные американские города освещали более 90 тыс. дуговых ламп.

Горячие нити

Большинство людей связывают изобретение ламп накаливания с именем Эдисона. Однако несмотря на все его заслуги в этой области изобретателем лампы был все же не он.

Первая лампа накаливания больше напоминала ювелирное изделие или произведение искусства как по трудоемкости, так и по стоимости. Задолго до Эдисона, в 1820 году, Уоррен Де ла Рю поместил платиновую проволочку в стеклянный сосуд, из которого был откачан воздух, и пропустил по ней ток. Лампа получилась удачной, но… платиновой! Она была настолько дорогой, что о широком ее использовании не могло быть и речи.

Множество изобретателей экспериментировали с различными материалами, но лишь в 1879 году Джозеф Свен и Томас Эдисон независимо друг от друга разработали лампу накаливания с угольной нитью. Для своего изобретения Эдисон устроил массовую грандиозную презентацию: в канун нового, 1880 года он использовал 100 своих ламп, чтобы осветить улицы, лабораторию и станцию городка Менло-Парк (Нью-Джерси). Поезда ломились от желающих посмотреть на это чудо, и Пенсильванской железной дороге даже пришлось пустить дополнительные составы. Лампы Эдисона работали около ста часов, потребляли 100 Вт и давали световой поток в 16 кандел (для сравнения – современная 100-ваттная лампа накаливания дает свет силой порядка 100-140 кандел).

Дальнейшее совершенствование ламп происходило по двум направлениям: угольная нить была заменена в 1907 году на вольфрамовую, а с 1913 года лампы стали газонаполненными (сначала их заполняли азотом, потом перешли на аргон и криптон). Оба усовершенствования были сделаны в лабораториях компании General Electric, основанной Томасом Эдисоном.

Хорошо знакомая читателям нашего журнала современная лампа накаливания дешева, широко используется в быту, однако нельзя сказать, что свет ее идеален: он смещен в сторону красной и ИК-областей спектра. Эффективность также оставляет желать лучшего: ее КПД составляет всего 1-4%. В этом смысле лампа накаливания – скорее отопительный, а не осветительный прибор.

Лампы с начинкой

У обычных ламп накаливания, кроме низкого КПД, есть еще один серьезный недостаток. Вольфрам при работе постепенно испаряется с раскаленной поверхности нити и оседает на стенках колбы. Колба приобретает «тонированный» вид, что ухудшает светоотдачу. А за счет испарения вольфрама с поверхности нити жизнь лампы сокращается.

А вот если в газ, наполняющий колбу, добавить пары, например, йода, картина меняется. Атомы испаренного вольфрама соединяются с атомами йода, образуя йодид вольфрама, который не оседает на стенках колбы, а разлагается на раскаленной поверхности нити накаливания, возвращая вольфрам в нить, а пары йода – обратно в колбу. Но есть одно условие: температура стенок колбы тоже должна быть достаточно высокой – около 2500С. Именно поэтому колбы галогенных ламп такие компактные и, естественно, горячие!

Галогенные лампы, за счет высокой температуры нити, дают более белый свет и имеют более длительное время жизни по сравнению с обычными лампами накаливания.

Холодный свет

Эти лампы – прямые потомки электрической дуги. Только разряд в них происходит между двумя электродами в емкости, заполненной различными газами. В зависимости от давления (низкого – < 0, 001 мм рт. ст., высокого – 0, 2-15 атм., сверхвысокого – 20-100 атм.) и вида заполняющего газа свойства излучения и назначение ламп могут быть различны.

Всем известные люминесцентные лампы «дневного света» заполнены парами ртути под низким давлением. При пропускании электрического тока через пары ртути возникает дуговой разряд и излучение света в УФ-диапазоне. Люминофор, нанесенный на внутреннюю поверхность колбы лампы, под действием ультрафиолета излучает видимый свет. В зависимости от типа люминофора, свет может быть как чисто белым, так и «холодным» (голубоватым) или «теплым» (желтоватым). Спектр люминесцентных ламп линейчатый и состоит из нескольких линий в различных областях спектра. КПД таких ламп достигает десятков процентов, в быту их часто называют «лампами холодного света».

Лучи прожекторов

Еще один вид газоразрядных ламп – HID (High Intensity Discharge – газоразрядные лампы высокой интенсивности, или дуговые газосветные лампы). Здесь люминофор не применяется, а газ при протекании электрического тока и возникновении дугового разряда излучает свет в видимой области спектра. В качестве заполняющего газа обычно применяются пары ртути, натрия или галиды металлов.

Ртутные дуговые лампы высокого давления применяются в прожекторах при освещении стадионов и других крупных объектов, они дают очень яркий бело-голубой свет (УФ отсеивается фильтрами). Мощность ртутных ламп может составлять десятки киловатт. Металл-галидные лампы – разновидность ртутных, они имеют скорректированную цветопередачу и увеличенную эффективность.