Смекни!
smekni.com

Становление радиотехнической теории: от теории к практике. На примере технических следствий из открытия Г. Герца (стр. 6 из 9)

(на рисунке - явная путаница! - V.V.)

Английский инженер сэр Джон Флеминг изобрел вакуумный диод, названный им "пустотным клапаном", и предложил использовать его в качестве детектора в радиоприемном устройстве (см. рис. 16) [55]. Он использовал открытый Эдисоном эффект "для создания двухэлектродной выпрямительной электронной лампы" и в 1905 г. получил на нее британский и американский патенты. Однако "права на его изобретения находились в собственности фирмы Маркони, консультантом которой он был". Тем не менее диод Флеминга "так никогда и не сыграл какой-либо значащей практической роли, поскольку он явно проигрывал в качестве выпрямляющего элемента кристаллическому детектору Брауна" [56].

Открытое ранее свойство двух находящихся в соприкосновении кристаллов пропускать ток в одном направлении послужило основой для изобретения кристаллического детектора. После ряда специальных исследований Браун и Пиккар нашли подходящие пары для кристаллических детекторов. "Уже в 1874 г. Браун пишет об открытых им явлениях следующее: если пропустить электрический ток через медный колчедан, пирит (железный колчедан), галенит (свинцовый блеск), блеклую руду и т.п. минералы, то наблюдается тот факт, что сила тока не пропорциональна ЭДС. Если же при этом электроды находятся в различных минералах, тогда сила тока зависит от знака приложенной разности потенциалов. Браун обнаружил в своей первой экспериментальной конфигурации тридцатипроцентное различие в силе тока при смене полярности. В усовершенствованном варианте эксперимента можно было говорить об отсутствии обратного тока вообще. Это явление, которое представляет собой отклонение электропроводности от закона Ома и характерно для однополярной проводимости, нашло свое важное применение: на нем основываются открытые Брауном и введенные в практику телеграфии без проводов кристаллические детекторы" [57].

Формирование новых теоретических схем радиотехники идет по двум основным направлениям: 1) в плане развития и конкретизации "универсальной" теоретической схемы электромагнитных взаимодействий путем заполнения диапазона практически используемых радиоволн (с одновременным развитием методов исследования их физических свойств); 2) в аспекте разработки специфической обобщенной теоретической схемы радиотехники на базе анализа конструкций различных радиотехнических систем, включая развитие средств их синтеза.

Построение технической теории - теоретической радиотехники

"Телеграфия без проводов" первоначально представляла собой прикладное исследовательское направление электродинамики. Позже она стала рассматриваться как новый раздел (область исследования) электротехники, задача которого заключалась в совершенствовании приема электромагнитных волн, борьбе со всевозможными видами помех, использовании тока высокой частоты. В ранних курсах по радиотехнике еще значительное место занимает электротехническая часть, так как радиотехника пользуется различными стандартными электротехническими устройствами и элементами. Поэтому радиотехнические цепи рассматриваются первоначально как разновидность электротехнических цепей, работающих на токах высокой частоты. В данном случае можно говорить о переносе исходной теоретической схемы и соответствующих ей понятий, представлений и методов анализа из смежной технической теории.

В процессе переработки этой схемы, взятой из электротехники, на основе нового эмпирического материала (иных конструктивных элементов) происходит ее коренное преобразование. Радиотехнические схемы имеют ряд существенных отличий от электротехнических цепей. А это влечет за собой и необходимость изменения их исходной электротехнической модели. Так, для получения токов высокой частоты в радиотехнике стали применяться методы, неизвестные в электротехнике, свободные колебания, не связанные с проводами и совершенно новые приборы и устройства. "Методы измерения силы тока, напряжения и т.д. невозможно было непосредственно заимствовать из тогдашней электротехники. Появлялись совершенно новые устройства новой измерительной техники: измерение частоты или длины волны и логарифмического декремента" [58]. Кроме того, изменяется и масштаб многих электротехнических величин. Радиотехнику приходится учитывать такие величины, которые слишком малы и не представляют интереса при изучении техники медленных изменений электрического тока. Другими словами: достигается соответствие двух слоев технической теории - поточных (описывающих физические процессы, протекающие в радиотехнических устройствах) и структурных (задающих конструктивно-технические параметры этих устройств) схем.

Параллельно разрабатываются частные теоретические модели, такие, как теория усилителей, теория пустотных (ламповых) генераторов переменного тока и т.п., образующих отдельные островки теоретического исследования. Все частные теоретические вопросы, касающиеся конструктивных элементов радиотехнических систем (например, электровакуумных приборов), и более детальное описание конструкции их подсистем (радиоприемников, радиопередатчиков, антенн [59] и т.д.) постепенно выносятся в специальные курсы. В результате выделились некоторые вопросы, представляющие общий интерес для всякого радиотехнического устройства. Частные теоретические схемы перерабатываются и систематизируются с одновременным их обобщением.

Проблема введения однородных идеальных объектов радиотехнической теории, позволяющих установить соответствие ее функциональной, поточной и структурной схем, на уровне традиционных электротехнических элементов решалась относительно просто.

Во-первых, уже в электротехнике было установлено однозначное соответствие между всеми этими идеальным объектами (емкостью, индуктивностью, сопротивлением) и конструктивными элементами реальных электрических схем (конденсаторами, катушками индуктивности, резисторами). Во-вторых, цепь, построенная из идеальных объектов, с помощью специально разработанных в электротехнике приемов может быть представлена в виде произведения некоторого количества операторов. Рассмотрение радиотехнических систем с точки зрения теории цепей значительно упрощает задачу их исследования, поскольку огромное разнообразие конструктивных элементов, отличающихся своими характеристиками, принципом действия, конструктивным оформлением и т.д., заменялось сравнительно небольшим количеством идеальных элементов и их соединений, представляющих реальные элементы и связи. Любая электротехническая цепь может рассматривается как совокупность идеализированных двухполюсников, действие каждого из которых может быть описано линейным оператором, преобразующим входящий ток в выходящий - и тот и другой представляются в этом случае вектором, характеризующим максимальное (или действующее) значение силы тока и его фазу. Одна из наиболее распространенных электротехнических схем - это трансформатор, преобразователь тока и/или напряжения, "в простейшем случае состоящий из 2 обмоток, первичной и вторичной, снабженный, как правило, ферромагнитным сердечником. Прохождение переменного электрического тока в первичной обмотке трансформатора индуцирует ЭДС во вторичной обмотке".

Американский инженер сербского происхождения Никола Тесла (1856-1943) пытался использовать этот принцип для беспроводной передачи энергии. Для этого в цепь первичной обмотки трансформатора включался колебательный контур с искровым прерывателем. В 1897 г. в Нью-Йорке он получил патент на "Электрический преобразователь", известный также под названием "трансформатора Теслы" (см. рис. 17) [60].

Несколько сложнее обстоит дело с нелинейными элементами радиотехнических цепей (например, радиолампами). Но и они для токов и напряжений, соответствующих линейным участкам их вольт-амперных характеристик, могут быть рассчитаны с помощью традиционных электротехнических методов.

К началу 20-х гг. телеграфия без проводов из полулюбительского изобретательства, где преобладали интуиция и искусство, превратилась в инженерную дисциплину, покоящуюся на твердом фундаменте технических расчетов и проектирования. Электрическая телеграфия "использует лишь слабые электрические токи и низкие напряжения по сравнению с сильноточной электротехникой. Тем не менее законы распространения электрического тока остаются в обеих этих областях одни и те же" [61]. В дополнение к этому разрабатываются новые методы и теории, например теория электрических цепей. "Доминирующая до конца XIX столетия сильноточная электротехника (машиностроительный период развития электротехники) была в основном ориентирована на практический опыт и поэтому не могла решающим образом помочь развитию теории электрических цепей. [...] Впервые в начале нашего столетия быстро развивающаяся слаботочная электротехника (телефонии и беспроволочной телеграфии) дала решающий импульс становлению самостоятельной теории электрических цепей и стала в этом виде исходным пунктом для многочисленных математических подходов" [62].

В радиотехнических системах постепенно выделились качественно иные, нежели в электротехнике, конструктивные блоки-подсистемы: колебательные и связанные контуры, фильтрующие цепи, усилители низкой, промежуточной и высокой частоты, модуляторы, детекторы, мультивибраторы, генераторы, ограничители, линии задержки и т.п. Эти конструктивные блоки, однако, могут иметь различную физическую основу, не обязательно сводимую к электротехническим элементам. Вокруг каждого такого блока группируются особые теоретические знания. Другими словами эти блоки сами представляют собой различные частные теоретические схемы, являющиеся, в свою очередь, обобщением конструктивных схем конкретных радиотехнических устройств, Например, главное свойство дроссельных фильтров (низких частот) и фильтров верхних частот - "явно выраженное предпочтение или подавление определенных диапазонов частот. Именно поэтому их называют "сепараторами" или "фильтрами". Вагнер выделил четыре основных типа фильтров: низких частот, высоких частот, полосовой фильтр и полосовой заграждающий фильтр. Кэмпбелл независимо от Вагнера пришел к аналогичным результатам, но опубликовал их лишь в 1922 г. Частотные характеристики этих цепей, состоящих из катушек индуктивности и конденсаторов (реактивных четырехполюсников) могут быть рассчитаны с помощью теории Вагнера. Возникший при этом "анализ электрических цепей" был настолько успешным, что стал применяться для расчета акустических и других механических колебательных систем. В то время как техника связи еще несколько десятилетий прежде должна была заимствовать аналогии из других научно-технических дисциплин, теперь ее теоретический аппарат настолько расширился, что она смогла возвратить полученное с процентами" [63]. Все эти блоки радиотехнических систем могут быть исследованы едиными методами в специально развитой для этого теории четырехполюсников. Монолитную или твердотельную схему, изготовленную как единый блок с помощью планарной технологии, можно теоретически представить как электронную схему, состоящую из резисторов, конденсаторов и т.п. Например, четырехполюсную интегральную схему можно представить в виде линии передачи с дискретными или распределенными элементами, т.е. состоящей из двухполюсников (см. рис. 18) [64]. Эта модель представляет собой схематическое "описание в форме соответствующей схемы замещения".