Главный опыт
Механизировав процесс натирания и увеличив натираемый предмет, Герике получил более мощный источник электрических зарядов (термин появится через 100 лет!). При этом он сразу же обнаруживает никем не описанное и необъяснимое явление. Птичье перышко натертый шар активно притянул, но затем также резко отбросил. Экспериментатор взял это перышко рукой и снова поднес к шару. Хотя шар вторично не натирался, он снова притянул и отбросил перо! Было над чем задуматься!
Герике решает выяснить, а сколько времени может обладать отталкивающей силой натертый серный шар? Он натирает шар, снимает его с остова установки и подносит к нему перышко.
Оно привычно притягивается и тут же отталкивается, зависая в воздухе. Исследователь пытается поднести опять к нему шар, но перо, не прикасаясь к шару, снова отлетает на некоторое расстояние. Если приблизить шар снизу, можно было заставить перышко подниматься вверх и перемещать его в любом направлении. Герике запишет впоследствии: «перышко можно было носить по всей комнате».
До нас дошло графическое отображение опыта. Оно приводится во всех публикациях, посвященных истории электричества, но вот в большинстве из них почему-то отсутствует один из важнейших элементов эксперимента – птичье перышко. Мы приводим полное отображение рисунка, где парящее перышко обозначено греческой буквой «альфа» (рис. 1).
Так было сделано одно из величайших открытий в области электричества: электрическая сила, как и магнитная, может быть не только притягивающей, но и отталкивающей.
Но не все было просто при проведении опытов. Парящее в воздухе перышко снова притягивалось серным шаром, после того как оно случайно касалось постороннего предмета, будь то пол, стена или нос экспериментатора. Когда приближали к парящему перышку горящую свечу – то же самое. Это было непонятным. Эксперимент задал больше вопросов, чем дал ответов. Одно было ясно – причина электрического притяжения тел, указанная Гильбертом, то есть истечение чего-то там из натираемых тел, создание там вакуума и затем притяжение легких предметов, не есть сила, вызываемая пустотой.
Интересно отметить, что об опыте по парению заряженных тел в электрическом поле, сделанном Герике, вспомнили через 250 (!) лет, чтобы с использованием новой экспериментальной техники попытаться ответить на вопрос о величине электрического заряда электрона. И это удалось сделать сравнительно просто.
Американский физик Роберт Милликен в 1906 г. предположил, что если поместить в электрическом поле заряженную мельчайшую капето можно определить величину электрического заряда этой капельки. Он сделал установку, упрощенный вид которой изображен на рис. 2.
В специальную камеру пульверизатором П подаются мелкие капельки жидкости (масло, ртуть), которые заряжаются трением о сопло пульверизатора. Затем отдельные капли попадают между двух пластин заряженного воздушного конденсатора К. Через микроскоп М наблюдают за движением капелек. Вес капелек вычисляют, определяя под микроскопом их диаметр при известном удельном весе. Зная напряженность электрического поля и силу, удерживающую капельку в подвешенном состоянии (равную весу), можно было определить величину заряда. Милликен не отождествлял капельки жидкости с электронами.
Он просто определял электрические заряды капелек и обнаружил, что эти заряды ДИСКРЕТНЫ, т. е. не непрерывны, а кратны. Минимальный заряд, который только возможно было получить, должен был соответствовать согласно атомной теории заряду электрона.
«Установка Милликена для измерения заряда электрона дала столь убедительные результаты, что последние противники атомной теории вынуждены были сдаться» (Митчел Уилсон. Американские ученые и изобретатели. М., «Знание», 1964 г., с. 111).
Многочисленные опыты, и не только Милликена, привели к фундаментальному результату: тело может принимать или отдавать электрический заряд только порциями ЦЕЛОЧИСЛЕННО КРАТНЫМИ ЭЛЕКТРИЧЕСКОМУ ЗАРЯДУ, РАВНОМУ 1,6 x 10-19 кулонов. Несмотря на бесчисленные попытки, никогда не удавалось получить заряд меньше этой величины. Поэтому заряд е=1,60 x 10-19 Кл. называют ЭЛЕМЕНТАРНЫМ ЭЛЕКТРИЧЕСКИМ ЗАРЯДОМ, или «атомом электричества» [6]. А у истоков этого открытия стоял электрик номер два в истории электричества.
Жизнь Отто фон Герике богата событиями и даже приключениями, неординарна и вовсе не напоминает биографию кабинетного ученого. Родился он 20 ноября 1602 г. в немецком городе Магдебурге, первоклассной крепости на р. Эльбе. Город имел торговые привилегии со времен Карла Великого, поэтому был процветающим торговым центром, а также центром промышленных мануфактур.
Состоятельная семья Герике имела сельскохозяйственные угодья, дома и обладала правом пивоварения. Этот факт имеет прямое отношение к научной биографии ученого, так как, по словам историка науки Дж. Бернала, «он израсходовал на свои опыты 4000 фунтов стерлингов – сумму по тому времени астрономическую». Добавим, что без всякой надежды на возмещение расходов, только из любви к науке. Впрочем, это не единственный подобный случай – так поступали сверхбогатые люди Роберт Бойль, Генри Кавендиш и многие другие энтузиасты-исследователи.
С 1617 по 1622 гг. Герике обучался общеобразовательным предметам в университетах Германии – Лейпциге и Гельмштадте, а юриспруденции – в Иене. В 1623 г. он выехал в Голландию, где в Лейденском университете изучал механику и фортификацию, к которой в то время относилась и механика. Затем Герике совершает вояжи по научным центрам Авремени.
По возвращении в Магдебург в 1626 г. Герике женится, избирается на должность ратмана (городского советника) и фактически становится охранителем и военачальником Магдебурга. Инженерные знания советника помогают Магдебургу в ходе Тридцатилетней войны выдержать в 1629 г. семимесячную осаду немецкого полководца Валенштейна, но в 1831 г. Магдебург был взят австрийским генералиссимусом Тилли, представлявшим католических сторонников этой религиозной войны. Город был разграблен и сожжен, а руководитель обороны попал в плен. Собственное имущество Герике было растащено «ордами Тилли», слуги перебиты. Но его самого за выкуп в 300 талеров выпустили на свободу.
Оставшись без средств к существованию, Герике поступает на службу в войска Густава-Адольфа, короля могущественной тогда Швеции, в качестве генерал-квартирмейстера и военного инженера. По освобождении шведами Магдебурга Герике возвращается домой, чтобы получить назад свою недвижимость и там же начинает восстановительные работы в крепости, строит мост через Эльбу. Попутно он занимается дипломатической деятельностью и добивается некоторых успехов, в частности решает вопрос замены оккупационных войск местным гарнизоном.
Город в знак признательности избрал Герике своим бургомистром в 1646 г. Тогда и началась научная деятельность военного инженера, широту интересов которого даже трудно охватить. Он занимается астрономией и высказывает мысли о возможности вычисления периода возвращения комет, а также химией – пытается разобраться в процессах брожения (пивовар!). Обнаруживает возможность намагничивания железа от земного магнетизма, а также проводит свои знаменитые атмосферические опыты: взвешивает воздух, изобретает термометр (вернее термоскоп), манометр и барометр (водяной), с использованием которого 9 декабря 1660 г. делает первый метеорологический прогноз – предсказывает ураган.
Нужно отметить, что свою главную задачу в науке – доказать существование «пустоты» посредством убедительных и наглядных опытов, доступных широкому пониманию публики, Герике с честью выполнил.
В 1666 г. император Леопольд именно за это возвел бургомистра Магдебурга в дворянское достоинство, после чего Герике изменил правописание своей фамилии на фон Герике, каковое иногда встречается и в русской переводной литературе.
На должности бургомистра О. Герике пробыл 32 года и в 1678 г. оставил ее по старости. Он умер 11 мая 1686 г. в Гамбурге в доме своего единственного оставшегося в живых сына, куда уехал от свирепствовавшей тогда в Магдебурге чумы. Был ли, как это предполагалось, его прах перевезен в родной город, который он прославил навек, осталось неизвестным. Такое случалось, как видим, не только в России.
Каскад открытий
Другое выдающееся открытие
О. Герике, ныне считающееся само собой разумеющимся, отмечено первым электриком России Г.В. Рихманом. Вот что записано в его тетрадях: Герике дал «отменный повод к дальнейшему расширько возбуждать электричество трением, но также СООБЩАТЬ ЭЛЕКТРИЧЕСТВО ДРУГИМ ТЕЛАМ, не электризующимся путем трения» [7].
Действительно, а как наэлектризовать воду, металлы, песок, ту же пушинку или льняную нитку? Оказалось чрезвычайно просто. Герике отмечает, что при приближении к натертому шару капель воды они приходили в волнообразное движение, а льняной шнур, прикоснувшись к шару, заряжается и тоже начинает притягивать бумажные листочки. И неспроста по-видимому указывается длина этого шнура – «один локоть». Через многие десятилетия (1729) англичанин Грей начнет увеличивать это расстояние и сделает открытие, что электрический заряд передается практически на безграничное расстояние. Теперь можно было создавать электрическую машину (генератор), чтобы сообщать заряды любым предметам на любом расстоянии.
Весьма многообещающими были следующие наблюдения бургомистра Магдебурга. К скамейке была прикреплена деревянная стойка (по современным понятиям – изолятор), с верхней части которой спускалась льняная нитка. Натертый серный шар приближался на близкое расстояние к верхней части нити. Если поднести к нижней части нити палец, то нить ПРИТЯГИВАЛАСЬ К ПАЛЬЦУ, ХОТЯ ПРЯМОГО КОНТАКТА МЕЖДУ ШАРОМ И НИТЬЮ НЕ БЫЛО.