Смекни!
smekni.com

Запланированная случайность (стр. 2 из 3)

Молодые ученые, взгляды которых полностью совпадали, проводили не только совместные опыты, но и стали близкими друзьями. Эксперименты проводились по теме связи электричества с другими физическими явлениями. Что было известно об этом науке того времени?

1. Электричество могло производить механическую работу. (Натертый янтарь притягивает легкие тела. Явление известно сотни лет.)

2. Электричество давало свет и звук. (Электрическая искра.)

3. Электричество давало тепло. (Гальваническое раскаливание проволоки.)

4. Электричество можно пробовать на вкус, оно производит другие физиологические действия.

5. Электричество обладает химическим действием. (Здесь помимо опытов по разложению воды Риттер как первооткрыватель прекрасно знает о химическом происхождении гальванизма.)

Все подходило под построение положений философии Шеллинга. Только магнетизм в эти рамки не вписывался. Конечно, железные проводники намагничивались иногда электричеством, но это происходило по понятиям науки ХVIII века от механических проявлений электричества (встряска частиц железа).

Но согласно философским построениям Шеллинга связь между электричеством и магнетизмом должна была существовать, и это требовалось доказать. Вот что записал тогда Эрстед: «Мое твердое убеждение, что великое фундаментальное единство пронизывает природу. После того как мы убедились в этом, вдвойне необходимо обратить наше внимание на мир разнообразия, где эта истина найдет свое единственное подтверждение. Если мы не сделаем этого, единство само по себе становится бесплодным и пустым рассуждением, ведущим к неправильным взглядам».

В 1804 г. Эрстед возвращается в Данию. Но с работой в университете у него не все было ладно. Он не мог рассчитывать на государственную оплачиваемую должность. Однако, после того как Эрстеду было поручено ведать коллекцией физических и химических приборов, принадлежащих королю (понятно, что за деньги), он решается читать частные лекции по физике и химии.

Если учесть, что в Париже он, по его словам, «ежедневно изучавыступлений был понятен. «Мои лекции по химии, – писал начинающий лектор, – привлекают столько слушателей, что не все могут поместиться в аудитории».

Именно этими лекциями Эрстед доказал администрации университета свое право на оплачиваемую штатную должность. В 1806 г. он становится экстраординарным профессором физики, в функции которого входила обязанность экзаменовать кандидатов по философии, а также преподавать физику и химию студентам-медикам и фармацевтам. «Отныне, – писал уже штатный профессор, – я получил привилегию основать физическую школу в Дании, для которой я надеюсь найти среди молодых студентов много талантливых людей».

После этого назначения физика была признана полноправной дисциплиной в Копенгагенском университете. И через сто лет один из его воспитанников Нильс Бор (1855 – 1962) станет одним из создателей современной квантовой физики. А с 1936 г. Американская ассоциация преподавателей, учитывая лекторские таланты Эрстеда, присуждает медаль Эрстеда «За выдающиеся заслуги в преподавании физики» наиболее выдающимся профессорам всех стран мира [7].

В 1812 г. Эрстед снова выезжает за границу – в Берлин и Париж. И там он пишет работу «Исследование идентичности электрических и химических сил», где пытается показать, что магнитный эффект производится электричеством. Эта работа свидетельствует о том, что автор продолжает руководствоваться своей философской концепцией, хотя, по словам историков физики, «эта философия скорее тормозила, чем двигала вперед его научное развитие».

В 1815 г. король Дании предоставил свою коллекцию физических приборов в распоряжение университета. Нетрудно представить себе радость Эрстеда: «Я обладаю теперь прекрасными приборами и могу удачно производить любые эксперименты». Наконец-таки с 1817 г. теперь уже ординарный профессор начинает заведовать кафедрой физики и становится членом правления университета.

Педагогическая нагрузка у Эрстеда была чрезмерно большой. Материальные затруднения вынуждали его брать дополнительную преподавательскую работу сверх основной. Этот факт сыграет свою роль в великом открытии, однако и не мешает экспериментальной работе: «Мои физические исследования идут параллельно моим лекциям».

Ничто не предвещает открытия. В 1818 – 1819 годах Эрстед исследует минералы острова Борнгольм, одновременно читая лекции в университете и подрабатывая вечерами на занятиях с аспирантами. На одном из таких занятий 15 февраля 1820 г. Эрстед демонстрирует слушателям опыт, где магнитная стрелка, подносимая к выводам вольтова столба, не реагирует на электрический заряд полюсов. И тут у него возникает мысль «попытаться установить влияние провода, НАГРЕТОГО электрическим током», на магнит [8]. Эрстед замыкает проводником полюсы вольтова столба и ... Тут свидетельства очевидцев расходятся. Одни говорят, что швейцар института, другие – что один из аспирантов заметил, что в момент замыкания проводом полюсов стрелка находившегося рядом компаса отклонилась (рис.1). Он был занят манипуляциями скручивания проводов. А вот наблюдательный очевидец немедленно доложил об этом лектору. Теперь и сам преподаватель мог убедиться в обнаружившемся феномене.

Так состоялось открытие, к которому уже солидный ученый шел долгие годы.

Эффект легко воспроизводился. И Эрстед решает продолжить исследования в спокойной обстановке – в лаборатории.

Момент истины

Еще с 1817 г. в распоряжении Эрстеда была большая гальваническая батарея, сделанная им совместно со своим другом, советником королевского суда, Эсмархом. Батарея состояла из 20 медно-цинковых пластин, каждая площадью 10 на 10 дюймов, т. е. 650 см2. Эта батарея быстро раскаляла замыкающие ее проволочки. Вскоре экспериментатор заметит, что источник тока может быть и менее мощный, а температура нагретой проволоки не сказывается на результатах опыта.

В опытных изысканиях Эрстеда помимо Эсмарха принимают участие президент Датского королевского общества Влейгель, профессор эстетики Гаух, профессор естественной истории Рейнгардт, химик-органик Цейзе. Впрочем, опыты производил в основном

Эрстед, а последним демонстрировал только те, в которых ему «удавалось наблюдать какое-нибудь замечательное явление» [9].

Для начала Эрстед повторил условия своего лекционного опыта, а затем стал их менять. И вот что обнаружилось. «Если расстояние от проволоки до стрелки не превосходит 3/4 дюйма, отклонение составляет 450. Если расстояние увеличивать, то угол пропорционально уменьшается. Абсолютная величина отклонения изменяется в зависимости от мощности аппарата». (Используя данное сообщение, А.М. Ампер вскоре предложит на его принципе магнитоэлектрический гальванометр, роль которого в развитии электрической науки трудно преувеличить.)

Дальше начались вообще чудеса. Экспериментатор решает проверить действие проводников из различных металлов на стрелку. Для этого берутся проволоки из платины, золота, серебра, латуни, свинца, железа. И о чудо! Металлы, которые никогда не обнаруживали магнитных свойств, становились как бы магнитными, когда через них протекал электрический ток.

Эрстед стал экранировать стрелку от провода стеклом, деревом, смолой, гончарной глиной, камнями, диском электрофора. Экранирование не состоялось. Стрелка упорно отклонялась. Отклонялась даже тогда, когда ее поместили в сосуд с водой. Последовал вывод: «Такая передача действия сквозь различные вещества не наблюдалась у обычного электричества и электричества вольтаического». Значит, это было не электрическое, а чисто магнитное действие!

Когда соединительную проволоку Эрстед ставил вертикально, то магнитная стрелка совсем не указывала на нее, а располагалась как бы по диаметру окружности с центром по оси проволоки (рис. 2). Исследователь предложил считать действие проволоки с током ВИХРЕВЫМ, так как именно вихрям свойственно действовать в противоположных направлениях на двух концах одного диаметра.

Уже в июне 1820 г. Х.К. Эрстед печатает работу под заголовком: «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку». В ней ученый пишет резюме: «Основной вывод из этих опытов состоит в том, что магнитная стрелка отклоняется от своего положения равновесия под действием вольтаического аппарата и что этот эффект проявляется, когда контур замкнут, и он не проявляется, когда контур разомкнут. Именно потому, что контур оставался разомкнутым, не увенчались успехом попытки такого же рода, сделанные несколько лет тому назад известными физиками».

Так вот где, оказывается, была собака зарыта! И грозовой разряд, замыкая цепь между заряженным облаком и «землей», образовывал вокруг себя магнитное поле и намагничивал предметы. То же делал разряд лейденской банки, заставляя течь электрические заряды через стальную иголку. Впрочем, в последнем случае не все было так просто. Позже окажется, что разряд лейденской банки имеет колебательный характер и это вызывало затруднения. А с гальваническими элементами все было очень просто. Никаких сложностей. Имей источник тока, обрывок проволоки, компас и ... убеждайся в выводах Эрстеда.

Знаменательными в работе данного ученого являются признания, свидетельствующие о том, что его натурфилософские идеи были совсем ни при чем, когда он сделал открытие. «Я совершенно не буду входить в подробности тех идей, – пишет Эрстед, – которые руководили мною при моих исследованиях, так как это не может содействовать уяснению полученного результата. Я ограничусь только фактами, которые делают этот результат очевидным».