Смекни!
smekni.com

Гаметоциды и их применение в селекции (стр. 1 из 13)

Гаметоциды — химические соединения, применение .которых в опреде­ленные этапы развития растений приводит к гибели мужского гаметофи-та в результате нарушении метаболических процессов в период формиро­вания пыльцевых зерен. Действие гаметоцидов на физиолого-биохимиче-ские процессы в клетке аналогично стерилизующей цитоплазме при пере­мещении в нее ядра, что вызывает мужскую стерильность.

Исследования, проведенные в ряде стран, в том числе и в СССР, по­зволили выявить ряд химических соединений, которые индуцируют муж­скую стерильность у яровой и озимой пшеницы, ржи и других сельскохо­зяйственных культур. Использование гаметоцидов позволяет организовать Промышленное .производство гибридных семян зерновых и других сельско­хозяйственных культур. Однако полученные гаметоциды вызывают ряд по­бочных нежелательных явлений: значительное ингибирование роста, за­держку 'в прохождении .фенологических фаз и д'р. Поэтому необходим дальнейший поиск новых химических соединений, обладающих гаметоцид-ной активностью.

.


ВВЕДЕНИЕ

|Рост народонаселения планеты, необходимость повышения темпов производства продуктов сельского хозяйства опреде­ляют поиск новых направлений в селекции сортов и гибри­дов — основных средств сельскохозяйственного производства. В последнее время широкие исследования гетерозиса пшени­цы, ржи, ячменя, подсолнечника, сахарной свеклы, хлопчат­ника, ряда овощных, бахчевых, цветочных, декоративных культур и кормовых трав показали, что гибриды первого по­коления этих растений обеспечивают прибавку урожая на 20—25% и более по сравнению с районированными сортами [1,7, 35, 36].

Практическое использование гетерозисного эффекта воз­можно лишь при условии хорошо налаженного производства гибридные семян в значительном объеме. У ряда культур, об­ладающих высоким коэффициентом размножения семян и низкой посевной нормой (кукуруза, томаты и др.), производ­ство гибридных семян может быть организовано при ручной кастрации материнских растений с последующим свободным или принудительным опылением. Однако для большинства возделываемых растений этот метод неприменим, так как за­траты труда, необходимые для получения гибридных семян первого поколения, не окупаются дополнительно получаемой продукцией.

В настоящее время в результате использования явления цитоплазматической мужской стерильности (ЦМС) получены гибриды первого поколения пшеницы, сорго, кукурузы, сахар­ной свеклы, томатов, лука, сладкого перца и налажено мас­совое производство гибридных семян. Близки к завершению исследования по созданию гибридов ржи и подсолнечника [35]. Наряду с этим при селекции с томатами пытаются при­менить формы с функциональной мужской стерильностью [36]. 'Создание мужских стерильных линий, отбор линий — за­крепителей стерильности и форм, восстанавливающих фер-тильность, значительно усложнили ведение селекции я семе­новодства. Между тем основным недостатком использования системы «ЦМС — восстановление фертильноста» при получе­нии новых гибридных комбинаций скрещиваний является по­стоянная необходимость создания стерильных аналогов и аналогов '— восстановителей фертильности новых высокопродук­тивных сортов и самоопыленных линий.

Сравнительно недавно для индукции мужской стерильно­сти на растения в определенные фазы развития воздействова­ли различными физическими факторами (сокращенный све­товой день, высокие и низкие температуры и др.) [2, 48, 97, 130]. Несмотря на полученные положительные результаты» ввиду отсутствия технических средств для массового произ­водства гибридных семян эти приемы не были внедрены в практику.

•Определенные успехи в разработке методов мужской сте­рильности растений были достигнуты с помощью ряда хими­ческих соединений — растворов солей феноксиуксусной кис­лоты, гидразида малеиновой кислоты (ГМ1К), этрела, индо-лилуксусной кислоты (ИУК), нафтнлуксусной кислоты (НУК), гиббереллина (ГКз) и некоторых других, названных гаметоцидами. Этот термин — производное от двух слов:

гамета — по-гречески половая клетка, цидо — по-латински убивать. В настоящее время в ряде стран Европы и в США проводят исследования по выявлению химических соединений, обладающих гаметоцядной активностью к мужскому гамето-фиту растений, и разрабатывают способы их применения для массового производства гибридных семян различных сельско­хозяйственных культур. Использование методов химической индукции мужской стерильности у зерновых, технических, овощных и кормовых культур позволит получить семена гиб­ридов первого поколения, вовлекая в селекционный процесс наиболее совершенные сорта без создания их стерильных ана­логов и линий, несущих гены восстановления фертильности.

Преодоление трудностей, препятствующих эффективному использованию гаметоцидов, в значительной мере зависит от определения сущности процесса стерилизации, в основе ко­торого лежат конкретные физиолого-биохимические измене­ния в тканевом метаболизме спорогенеза, вызывающие анор­мальности в развитии пыльцевого зерна с последующей его абортивностью. В связи с практическими запросами физиоло­гия развития пыльцы привлекает особое внимание.

ЦИТОЛОГИЧЕСКИЕ, ЦИТОХИМИЧЕСКИЕ И ФИЗИОЛОГО-БИОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ ФОРМИРОВАНИЯ МУЖСКОГО ГАМЕТОФИТА

Мужской гаметофит покрытосеменных растений — микро­скопическая структура, которая в период ранних стадий раз­вития окружена тканями пыльника и непосредственно контак­тирует с клетками тапетума, метаболизм которых тесно свя­зан с развитием пыльцевьгх зерен, особенно в критические периоды преобразования материнских клеток пыльцы в гап-лоидные микроспоры. Так как наибольшая эффективность действия гаметоцидов приходится на период формирования тетрад и связана с биохимизмом их развития, возникает не­обходимость в детальной информации о ранних фазах разви­тия пыльцевого зерна в материнской клетке пыльцы.

С помощью электронной микроскопии установлено, что до мейоза материнские клетки пыльцы в пыльниках связаны между собой и с клетками тапетума цитоплазматлческими мостиками (плазмодесмами) [5, 59]. Перед стадией лептотены профазы 1 начинаются преобразовательные процессы в обо­лочках и мембранах микроспороцитов, которые быстро обво­лакиваются слоем каллозы, представляющей собой (3-1,3-свя-занный полимер глюкозы [130]. Это соединение локализуется между оболочками материнской клетки пыльцы и клеточной мембраной. С началом стадии лептотены плазмодесмы, сое­диняющие клетки тапетума и микроспороцитов, исчезают. Слой каллозы продолжает утолщаться, однако некоторые рай­оны оболочек микроспороцитов не покрываются каллозой, здесь соседние материнские клетки пыльцы контактируют друг с, другом с помощью широких цитоплазматичесиих пере­тяжек, названных цитомиксическими каналами [28]. У боль­шинства видов растений все микроспороциты мейотической профазы взаимосвязаны. Такая цитоплазматическая общ­ность — важнейший фактор поддержания тесной синхронно­сти мейотических стадий. Цитомиксические каналы начинают исчезать к концу мейотической профазы I, а в телофазе I их количество совсем незначительно, к началу же профазы II материнские клетки пыльцы полностью изолируются друг от друга каллозными оболочками. После мейоза каллоза обра­зует между четырьмя гаплоидными спорами тонкую прослой­ку (стадия тетрад), и каждая спора становится полностью изолированной от других. Предполагают, что в формирование каллозных оболочек вовлечен аппарат Гольджи [137].

Процесс формирования оболочки пыльцевого зерна начи­нается вскоре после завершения мейоза и протекает между клеточной мембраной я каллозной оболочкой в каждой спо­ре тетрады. Первичным материалом для построения оболочки является примэкзина. После развития прдмэкзины синтезиру­ется предшественник зрелой экзины, морфология которого .за­висит от его химического состава. По своим свойствам это вещество сходно с протоспоруллином. На данном этапе кал-лозная оболочка исчезает, споры быстро увеличиваются в размерах (в 3—5 раз) и интенсивно синтезируют спорополле-нин [70, 71]. После освобождения из тетрад в микроспорах формируется интина, содержащая микрофибряллы целлюло-5


зы, которые образуют матрикс с пектиновым материалом, ге-мицеллюлозой и незначительным количеством белка. До пол­ного созревания пыльцевое зерно покрывается различными производными распадающегося тапетума — каротиноидами, липидами, белками и другими соединениями [130]. При даль­нейших фазах развития пыльцы эффективность действия га-метоцидов снижается [47, 65, 75, 80, 102].

Ранние этапы развития пыльцы тесно связаны с функцио­нальной активностью тапетума. Цитохимические и ультра­структурные исследования свидетельствуют, что тапетум фун­кционирует как источник питательного материала при разви­тии пыльцевого зерна. У покрытосеменных установлено два основных типа тапетума: гландулярный, при котором клетки по мере развития пыльцевых зерен дегенерируют до П9лного автолиза, и амебоидный [76]. В последнем клетки теряют свою оболочку, и протопласт тапетума распределяется между раз­вивающимися пыльцевыми зернами, образуя тапетальный пе­риплазмодий [61]. Мембраны такого тапетума могут прони­кать в экзину пыльцы. Питательный материал транспортиру­ется из клеток та'петума (возможно, предварительно метабо-ли'аируется им) к пыльцевым зернам .[62]. Взаимодействие та­петума и развивающихся микроопор максимально проявляет­ся при растворении каллозных оболочек микроспор. Исчезно­вение каллозы сопровождается развитием каллазной актив­ности. Энзим локализован в везикулах цитоплазмы тапетума [130].

Исследование (3-1,3-глюканазной активности в течение мей-оза я распада тетрад показало, что активность энзима резко возрастала, начиная со II мейотдческого деления, достигала максимума в фазу освобождения микроспор из тетрад и со­хранялась затем в течение 48 ч [82, 131]. Доказательством взаимосвязи между развивающимися пыльцевыми зернами и тапетумом, а также подтверждением кардинальной роли та­петума в образовании пыльцы служат работы по ЦМС [59, Gl, 62, 76].