Смекни!
smekni.com

Компоненты пищи, биосенсоры, микробные ферменты (стр. 4 из 5)

Клетки сохраняют, как правило, все системы жизнеобеспе­чения. Это позволяет проводить сложные последователь­ные реакции, осуществляя многостадийные процессы.

Для многих типов клеток, особенно микробных, разрабо­таны эффективные методы генетических операций, даю­щие возможность получать мутанты с высоким содержа­нием того или иного белка или фермента, что дает воз­можность оперировать с высокоэффективными каталити­ческими системами. Поскольку клетки сохраняют аппарат биосинтеза белка, потенциально могут быть разработаны высокоэффективные методы генодиагностики. Основными недостатками этих биосенсоров являются мед­ленный отклик электрода, связанный с необходимостью исполь­зовать толстые мембраны, а также сравнительно низкая селек­тивность, обусловленная присутствием в клетке или тканях не­скольких ферментных систем.

Для создания клеточных биосенсоров используют различные физические трансдьюсеры: электрохимические (амперометриче-ские, потенциометрические), оптические, акустические, калори­метрические. Развитие получили биосенсоры с использованием техники LAPS (светоадресуемых потенциометрических сенсо­ров). На основе LAPS-системы созданы достаточно чувствитель­ные системы слежения за физиологическим состоянием отдель­ных клеток - так называемые микрофизиометры.

Для создания биосенсоров используют микроорганизмы: Neyrospora europea - для определения аммиака, Trichosporon brassicae - для определения уксусной кислоты, Sarcina flavaдля определения глутамина, Azoiobacier vineiaudiiдля опреде­ления нитратов и другие. В тканевых электродах используют срезы почек и печени свиньи, срезы желтой тыквы, банана и другие. На основе гриба Aspergilus niger группой японских уче­ных были созданы биосенсоры для определения биогенных ами­нов в мясных продуктах.

Для иммобилизации клеток с сохранением их активности первоначально использовали материалы природного происхож­дения: желатину, агар, альгинат кальция, каррагенан. В послед­ние годы разработаны и развиты методы включения живых кле­ток в синтетические полимерные гели. Особенно интересные и перспективные результаты получены с использованием так на­зываемого метода криоиммобилизации клеток. Процедура крио-иммобилизации состоит из стадии получения суспензии клеток: в растворе полимера, замораживания суспензии с получением криоструктурированных гелей, размораживания с образованием пористого, механически прочного материала, устойчивого до температур 70-80°С. Клетки, включенные в такого рода порис­тый материал, сохраняют активность и способны функциониро­вать в течение нескольких месяцев.

64. Приведите примеры микробных ферментов, использующихся вместо растительных и животных.

Микробные ферменты все активнее заменяют растительные и животные ферменты. Так, амилазы из Bacillus и Aspergillus за­менили аналогичные ферменты из пшеничного солода и ячменя в пивоварении, хлебопечении и производстве сухого печенья, а также в текстильной промышленности; протеазы из Aspergillus - животные и растительные протеазы, употребляемые для раз­мягчения мяса: протеазы из Aspergillus и Bacillus lichemformis заменили панкреатические протеазы в процессе размягчения ко­жи (дубления) и в производстве моющих средств; реннины из Mucor — сычужный фермент из желудка телят в сыроварении.

Ферменты и их применение

Ферменты Продуценты Применение
Амилазы Бактерии, грибы Производство патоки, глюкозы, этанола. Добав­ка к хлебопродуктам. Способствующее пище­варению средство
Протеазы из микроорганизмов Бактерии, грибы Производство и созревание сыра. Приготовление соевого соуса и получение аминокислот. Выделка кожи. Активаторы пищеварения (дайджестанты). Осветление пива. Удаление бел­ковых комков из алкогольных напитков. Размяг­чение мяса (папайи). Производство моющих средств.
Реннин Желудок теленка, грибы Производство сыра
Липазы Дрожжи Производство масла и глицеридов. Активаторы пищеварения (дайджестанты)
Пеюгйназы Грибы Осветление и повышение выхода зина и фруктовых соков
Гемицеллюлазы Грибы Гидролиз гемицеллюлоз злаков и овощей
Целлголазы Грибы Гидролиз целлюлозы в глюкозу.
Инулаза Бактерии, грмбы Гидролиз инулина во фруктозу.
Инвертаза Дрожжи Предотвращение кристаллизации сахара в производстве кондитерских изделий. Производ­ство шоколада, высококачественной мелассы.
Глюкозоизомераза Бактерии Превращение глюкозы во фруктозу,
Нарингиназа Грибы Устранение горького привкуса соков цитрусовых.
Антоцианаза Грибы Обесцвечивание фруктовых соков
ДНКаза, рибонуклеотидаза Бактерии, грибы Гидролиз ДНК; получение монодезоксирибо- нуклеотидов и рибонуклеотидов, получение инозиновой кислоты
Глюкозооксидаза Бактерии Удаление кислорода или деструкция глюкозы для антисептики пищевых продуктов. Получение обезвоженного яичного порошка.
Каталаза Бактерии Стерилизация молока
Уреаза Дрожжи, грибы Разрушение мочевой кислоты

В настоящее время в промышленных масштабах получают четыре фермента: протеазу, глюкоамилазу, а-амилазу и глюко-зоизомеразу. Мировой рынок данных ферментов оценивается на сумму около 300 млн долл. Ежегодно производится 530 т протеа-зы, 350 т глюкоамилазы, 320 т а-амилазы и 70 т глюкозоизоме-разы. Основными производителями являются европейские ком­пании, причем 60% всей мировой торговли ферментами прихо­дится на датскую фирму «Ново индастри» и голландскую фирму «Гито-Брокадес НВ».

Все ферменты подразделяют на две категории - внеклеточ­ные и внутриклеточные ферменты. К первой категории относят­ся ферменты, выделяемые клеткой в среду, где они расщепляют питательные полимерные вещества до низкомолекулярных со­единений, которые могут проникать в клетку через клеточную стенку. Внутриклеточные ферменты в нормальных условиях сконцентрированы в объеме клетки и в среду не транспортиру­ются. Поэтому для их выделения необходимо разрушить клетки тем или иным способом.

Для некоторых областей применения ферментов необходимы относительно чистые препараты. Например, глюкозооксидаза, применяющаяся в производстве яичного порошка, не должна содержать ферменты расщепления яичного белка. Протеазы, во­димые внутримышечно домашнему скоту перед забоем для мяг­чения мяса не должны содержать никаких соединений, которые могли бы вызвать аллергическую реакцию у потребителей этого мяса. Относительно чистые ферменты применяются в клиниче­ской диагностике и в процессах, связанных с производством и обработкой пищевых продуктов.

В то же время многие из применяемых в промышленности препаратов ферментов очищены в гораздо меньшей степени. Как правило, они содержат ряд ферментов с различными каталитиче­скими свойствами.

Ценность, полученных микробиологическим способом фер­ментов наиболее ярко демонстрирует превращение крахмала в кукурузную патоку с высоким содержанием фруктозы, заме­няющую сахарозу в безалкогольных напитках. Хотя этот процесс внедрен в производство недавно, он уже дает более 2 млн. т па­токи в год. Превращение крахмала происходит в три этапа, на которых субстрат последовательно подвергается воздействию а-амилазы, глюкоамилазы и глюкозоизомеразы.

Стоимость выработанной патоки зависит исключительно от эффективности способа получения ферментов. Буньи Маруо и его сотрудники из Университета Нихон увеличили выход а-амилазы из Bacillus subtilis почти в 200 раз, комбинируя класси­ческие методы мутагенеза и селекции с техникой генетической рекомбинации. Они обнаружили ряд регуляторных механизмов, контролирующих синтез а-амилазы; действуя совместно, эти регуляторы повышают выход фермента в отобранных штаммах В.subtilis.

Технология рекомбинантных ДНК была использована также для производства температуроустойчивой а-амилазы. Бактерия B.subtilis растет при комнатной температуре, и синтезируемая ею а-амилаза легко денатурируется при нагревании. Если бы фер­мент обладал активностью при повышенной температуре, ката­литическое расщепление крахмала до глюкозы протекало бы с более высокой скоростью. Один из возможных путей для полу­чения такого фермента - это встраивание в геном B.subtilis гена а-амилазы из термофильной бактерии. Термофильные бактерии живут при повышенной температуре, и их ферменты устойчивы к нагреванию. Однако эти бактерии не могут служить источни­ком а-амилазы, так как организация их генома изучена плохо. Шойи Шиномия и его сотрудники из Токийского университета продемонстрировали, что введение в В.subtilis гена а-амилазы из термофильной бактерии приводит к увеличению выхода термо­стабильной а-амилазы.

Другим путем повышения эффективности производства фруктозы могла бы стать замена трех этапов утилизации крахма­ла одним. Этого можно достичь, включив в геном одного орга­низма гены для а-амилазы, глюкоамилазы и глюкозоизомеразы Превращение крахмала в кукурузную патоку с высоким содер­жанием фруктозы проходило бы тогда в одном ферментацион­ном сосуде.

Протеазы в промышленных масштабах выделяют из орга­низмов животных (из поджелудочной железы), высших растений (из соков и латексов), а также из дрожжей, плесеней и бактерий.

Протеазы применяются в производстве моющих средств, в химической чистке, при мягчении мяса, в сыроделии (только реннин), дублении, извлечении серебра из фотографических пленок и бумаг, производстве препаратов, способствующих пи­щеварению, а также в медицине при лечении воспалительных процессов и ран.