Смекни!
smekni.com

Компоненты пищи, биосенсоры, микробные ферменты (стр. 3 из 5)

Хлор, один из минеральных элементов питания достаточно высокой активности. При обычном питании общее количество хлора у взрослых людей составляет 10-15 г. Для удовлетворения потребности организма взрослого человека требуется 4-6 г хлора в сутки. Содержание хлора в пищевых продуктах незначительно. Несколько больше его в крупах и бобовых, мало во фруктах и овощах. В продуктах животного происхождения хлора содержится значительно больше.

Минеральные вещества имеют отношение и к красоте. Железо оказывает влияние на чистоту и свежесть кожи. Сера входит в лекарства, применяемые для лечения угрей и перхоти. Йод укрепляет ногти. Магниевые соли придают упругость мышцам и улучшают питание кожи. Кальций, калий, фосфор укрепляют мышцы и кожу. Чем богаче рацион, тем больше в нем необходимых минеральных веществ.

7. Пищевые волокна. Этим термином определяются так называемые балластные вещества, вопрос о роли которых в составе пищи и сохранении функциональной и метаболической стабильности организма относится к наиболее новым и интересным проблемам гигиены питания. Химический анализ этих веществ показал, что в основном это некрахмальные полисахариды, которые могут быть разделены на целлюлозу (клетчатку) и нецеллюлозные полисахариды - гемицеллюлозы, пектин, запасные полисахариды, подобные инсулину и гуару, а также растительные камеди и слизи. Кроме того, в них входит неуглеродное вещество - лигнин. Пищевые волокна содержатся в больших количествах в хлебе из непросеянной муки, орехах, бобовых, несколько меньше их в овощах, корнеплодах, фруктах. Предполагается, что пищевые волокна, содержащиеся в некоторых продуктах питания, оказывают защитное действие против сахарного диабета, ишемической болезни сердца, некоторых заболеваний печени и толстой кишки. Пищевые волокна в значительных количествах попадают в организм человека вместе с овощами, фруктами, орехами, картофелем, горохом, фасолью и кукурузой.

8. Вода составляет около 70% нашего организма. Чтобы сохранить нормальный уровень воды в организме, мы нуждаемся в постоянном ее пополнении. Добавляя в рацион много фруктов и овощей, мы вводим в организм большое количество дистиллированной воды.

Пища не может быть усвоена без воды. С ее помощью идет превращение белков, крахмалов и жиров в пищу, необходимую для нормальной жизнедеятельности организма. Вода необходима также для стимуляции работы желудка, в кишечнике она помогает формированию фекальных масс и своевременному выводу их из организма.

Человек в среднем потребляет только около 2,5 л воды в день, а в его организме циркулирует до 5 л. Разницу и составляет метаболическая вода.

59. Каковы принципы конструирования биосенсоров?

Биосенсоры - это аналитические устройства, использующие биологические материалы для «узнавания» определенных моле­кул и выдающие информацию об их присутствии и количестве в виде электрического сигнала. Принцип анализа, реализуемый в биосенсорах, основан на том, что биоматериал (ферменты, клет­ки, органеллы, иммунокомпоненты), иммобилизованный на физических датчиках, при взаимодействии с анализируемыми со­единениями генерирует зависимый от концентрации сигнал, ре­гистрируемый преобразователем.

Идея создания такого рода устройств возникла сравнительно недавно, в 60-х годах XX века. Впервые ее высказали Кларк и Лионе в 1967 г. Идея Кларка состояла в использовании фермент­ного электрода, т.е. электрохимического датчика с иммобилизо­ванным на его поверхности ферментом. Затем в обиход вошло понятие «биосенсор» или «биочип». Это важное событие к нау­ке. Здесь отражаются глубокие причины, связанные с так назы­ваемыми интеграционно-синтетическими процессами в науке, приводящими к появлению новых знаний.

Большинство биосенсоров ориентированы на анализ биологи­ческих жидкостей. Действительно, например, в крови находятся тысячи различных соединений. Задача заключается в том, чтобы быстро и эффективно (количественно) определить концентрацию нужного соединения, например, глюкозы. Для людей, страдаю­щих диабетом, это жизненно важный клинический анализ. Био­сенсоры обеспечивают такую возможность.

Функционально биосенсоры сопоставимы с датчиками живо­го организма — биорецепторами, способными преобразовывать все типы сигналов, поступающих из окружающей среды, в элек­трические. Наибольшее распространение сейчас получили био­сенсоры на основе ферментов, Среди таких устройств различают субстратные и ингибиторные биосенсоры. С их помощью реша­ют различные медико-биологические задачи (например, опреде­ление сахара в крови) и контролируют состояние среды обитания (контроль содержания токсикантов). Чувствительность ингиби­торных биосенсоров чрезвычайно высока, например, возможно определение остаточных количеств некоторых пестицидов на уровне 0.01 мкг/л и меньше.

Принципы конструирования биосенсоров. Конструктивно любой биосенсор представляет комбинированное устройство, состоящее из двух принципиальных функциональных элементов: биохимического и физического, находящихся в тесном контакте друг с другом. Биохимический элемент представляет собой биоселектирующую структуру и выполняет функцию биологического элемента распознавания. В качестве бкохимического преобразователя используют все типы биологических структур: ферменты, антитела, рецепторы, нуклеиновые кислоты и даже живые клетки. Физический преобразователь сигнала, на­зываемый трансдьюсер, преобразует определяемый компонент, а точнее, концентрационный сигнал, в электрический. Для счи­тывания и записи информации используют электронные системы усиления и регистрации сигнала.

Трансдьюсерами могут быть электрохимические преобразо­ватели (электроды), различного рода оптические преобразовате­ли, гравитационные, калориметрические, резонансные системы. Все виды биоселектирующих элементов можно комбинировать с

различными трансдьюсерами. Это создает большое разнообразие различных типов биосенсоров.

Основными характеристиками, позволяющими биосенсорному анализу успешно конкурировать с традиционными методами, являются оперативность анализа, высокая специфичность и чув­ствительность при низкой стоимости, отсутствие необходимости использовать дорогостоящую аппаратуру и квалифицированный персонал.

Наличие в устройстве биоматериала с уникальными свойст­вами позволяет с высокой селективностью определять нужные соединения в сложной по составу смеси, не прибегая ни к каким Дополнительным операциям, связанным с использованием дру­гих реагентов, концентрированием и т.д. (отсюда и название безреагентные методы анализа). Существует большое разнообра­зие физических преобразователей: электрохимические (электро­ды), спектроскопические (оптроды), пьезоэлектрические и т.д.

Разработка биосенсоров относится к наукоемким технологиям и представляет одну из ветвей современной биотехнологии. В настоящее время существует несколько типов биосенсоров. Наи­большее развитие получили ферментные и клеточные биосенсо­ры. Например, ферментные электроды, ферментные микрокало­риметрические датчики, биодатчики на основе хеми— и биолю­минесценции.

Ферментные (или безреагентные) электродыиспользуют электрохимический способ определения веществ, образующихся в ходе ферментативного превращения. Представляют собой электрод с нанесенным поверхностным слоем (каким-либо при­родным полимером), содержащим один или несколько иммоби­лизованных ферментов (иногда фермент может находиться в растворимом состоянии в приэлектродном слое, окруженном мембраной). В зависимости от типа взятого за основу электрода подразделяются на потенциометрические и амперометрические.

Ферментные микрокалориметрические датчики - использу­ют тепловой эффект ферментативной реакции. Состоит из двух колонок (измерительной и контрольной), заполненных носите­лем с иммобилизованным ферментом и снаряженных термисто-рами. При пропускании через измерительную колонку анализи­руемого образца происходит химическая реакция, которая со­провождается регистрируемым тепловым эффектом. Данный тип датчиков интересен своей универсальностью.

Хеми- и биолюминесцентные датчикирегистрируется све­товое излучение с различной длиной волны, испускаемое про­дуктами ферментативной реакции, находящимися в возбужден­ном состоянии. Конструкция включает колонку с иммобилизо­ванными на носителе ферментами (люциферазой, пероксидазой) и светоприемное устройство. Заложенный в систему этого типа датчиков аналитический метод характеризуется, прежде всего, крайне высокой чувствительностью — позволяет определять фем-томольные (10-12М) количества вещества.

Клеточные биосенсоры. Одно из достижений биотехнологии связано с развитием методов включения живых клеток в полимеры и твердые носители различной природы, и применение та­кого рода материалов для решения задач медицины, управляемо­го биосинтеза, анализа. Иммобилизованные клетки обладают рядом удивительных свойств.

Клетки являются доступным биологическим материалом. Используют клетки растений, животных, человека, ко наи­большее применение нашли клетки микроорганизмов, ко­торые культивируются, легко воспроизводятся и поддер­живаются в чистой культуре. В отличие от ферментов при использовании клеток не требуется дорогостоящих стадий очистки.

Имеющиеся методы иммобилизации: позволяют получить клетки, сохраняющие около 100% активности ферментов и способные функционировать достаточно длительные про­межутки времени. Клетки сохраняют все наиболее важные структуры и проявляют большую стабильность. В некото­рых случаях клетки сохраняют жизнеспособность и актив­ность ферментных систем в течение нескольких лет.