Таким образом, значение линейного коэффициента корреляции = -0,84 свидетельствует о наличии обратной и тесной связи между временем эксплуатации и ценой автомобиля.
Таким образом, значение линейного коэффициента корреляции = -0,63 свидетельствует о наличии обратной и тесной связи между пробегом и ценой автомобиля.
Таким образом, значение линейного коэффициента корреляции = 0,89 свидетельствует о наличии прямой и тесной связи временем эксплуатации и пробегом автомобиля.
Проведем анализ матрицы парных коэффициентов корреляции:
Составим матрицу парных коэффициентов корреляции:
Y | X1 | X2 | |
Y | 1 | -0,84 | -0,63 |
X1 | -0,84 | 1 | 0,89 |
X2 | -0,63 | 0,89 | 1 |
Так как оба условия не соблюдаются, то для составления уравнения регрессии будем использовать наиболее значимый (весомый) факторный признак, т.е. – X1 (время эксплуатации), т.к.
.Составим уравнение регрессии:
В качестве регрессионной модели выберем линейную модель, которая имеет вид:
Вычислим коэффициенты регрессионного уравнения:
Таким образом, уравнение регрессии примет вид:
В ходе исследования были выявлены следующие характеристики взаимосвязи стоимости автомобиля с факторными признаками:
· Стоимость автомобиля линейно зависит от пробега и времени эксплуатации причем эта зависимость обратная для обоих случаев. При увеличении пробега (времени эксплуатации) стоимость автомобиля уменьшается;
· Основным фактором, влияющим на конечную стоимость, является время эксплуатации;
· Выявлена зависимость стоимости автомобиля от времени эксплуатации, которая имеет следующий вид:
1) Сайт www.auto.ru.
2) Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики: Учеб. пособие. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – 336 с: ил. ISBN 5-279-02555-0.