С учетом отфильтрованных по правилу 3х сигм составим интервальные ряды для Х1, Х2, Y.
Интервальный ряд для Х 1 | ||
Х 1 | F 1 | Ср. цена тыс.руб. |
0-1 | 21 | 603 |
1-2 | 14 | 554 |
2-3 | 7 | 522 |
3-4 | 4 | 420 |
4-5 | 2 | 414 |
5-6 | 1 | 379 |
Интервальный ряд для Х 2 | ||
Х 2 | F 2 | Ср. цена тыс.руб. |
0 - 21 | 25 | 601 |
21 - 42 | 9 | 551 |
42 - 63 | 7 | 490 |
63 - 84 | 2 | 420 |
84 - 105 | 4 | 466 |
105 - 126 | 2 | 417 |
Интервальный ряд для Y | ||
Y | F y | Ср. цена тыс.руб. |
379 - 422 | 4 | 400,5 |
422 - 465 | 5 | 443,5 |
465 - 508 | 4 | 486,5 |
508 - 551 | 8 | 529,5 |
551 - 594 | 12 | 572,5 |
594 - 637 | 6 | 615,5 |
637 - 683 | 10 | 660 |
Проведем аналитические группировки продаваемых автомобилей по времени эксплуатации и пробегу и определим групповые средние.
Построим график Y(X1)
Зависимость цены от времени эксплуатации существует и носит линейный характер, чем больше время эксплуатации, тем дешевле автомобиль.
Построим график Y(X2)
Зависимость цены от пробега существует и носит линейный характер, чем больше пробег автомобиля, тем дешевле автомобиль.
На основанииданных статистического наблюдения выделим три типа автомобилей:
· по времени эксплуатации:
o новые автомобили от 0 до 1 года – 34 шт.
o средние автомобили от 2 до 3 лет – 13 шт.
o старые автомобили от 3 до 5 лет – 3 шт.
· по пробегу:
o новые автомобили от 0 до 50 тыс. км. – 36 шт.
o средние автомобили от 50 до 100 тыс.км. – 11 шт.
o старые автомобили от 100 до 150 тыс.км. – 3 шт.
· по цене:
o новые автомобили от 581 до 683 тыс. руб. – 19 шт.
o средние автомобили от 480 до 581 тыс. руб. – 12 шт.
o старые автомобили от 379 до 480 тыс. руб. – 12 шт.
Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,9.
При вероятности 0,9 t = 1,64
Следовательно:
Таким образом, с вероятностью 0,9 можно утверждать, что средняя цена автомобиля равна:
Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,95.
При вероятности 0,95 t = 1,96
Следовательно:
Таким образом, с вероятностью 0,95 можно утверждать, что средняя цена автомобиля равна:
Определим необходимую численность выборки при определении средней цены продаваемых автомобилей, чтобы с вероятностью 0,95 предельная ошибка выборки не превышала 10 тыс.руб.
На основании выборочного наблюдения оценим степень тесноты связи и проведем оценку ее существенности:
Для определения степени тесноты парной линей зависимости используем линейный коэффициент корреляции(r) :
Для вычисления линейных коэффициентов корреляции составим вспомогательную таблицу:
5 | 121 | 379 | 1,6 | 36,15 | 509,8 | 3,4 | 84,85 | -130,8 | -444,72 | -11098,4 | 288,49 |
4 | 74 | 399 | 1,6 | 36,15 | 509,8 | 2,4 | 37,85 | -110,8 | -265,92 | -4193,78 | 90,84 |
4 | 88 | 429 | 1,6 | 36,15 | 509,8 | 2,4 | 51,85 | -80,8 | -193,92 | -4189,48 | 124,44 |
3 | 95 | 393 | 1,6 | 36,15 | 509,8 | 1,4 | 58,85 | -116,8 | -163,52 | -6873,68 | 82,39 |
3 | 60 | 397 | 1,6 | 36,15 | 509,8 | 1,4 | 23,85 | -112,8 | -157,92 | -2690,28 | 33,39 |
3 | 54 | 430 | 1,6 | 36,15 | 509,8 | 1,4 | 17,85 | -79,8 | -111,72 | -1424,43 | 24,99 |
3 | 46 | 459 | 1,6 | 36,15 | 509,8 | 1,4 | 9,85 | -50,8 | -71,12 | -500,38 | 13,79 |
2 | 107 | 455 | 1,6 | 36,15 | 509,8 | 0,4 | 70,85 | -54,8 | -21,92 | -3882,58 | 28,34 |
2 | 47 | 467 | 1,6 | 36,15 | 509,8 | 0,4 | 10,85 | -42,8 | -17,12 | -464,38 | 4,34 |
2 | 97 | 468 | 1,6 | 36,15 | 509,8 | 0,4 | 60,85 | -41,8 | -16,72 | -2543,53 | 24,34 |
2 | 60 | 552 | 1,6 | 36,15 | 509,8 | 0,4 | 23,85 | 42,2 | 16,88 | 1006,47 | 9,54 |
2 | 41 | 565 | 1,6 | 36,15 | 509,8 | 0,4 | 4,85 | 55,2 | 22,08 | 267,72 | 1,94 |
2 | 57 | 570 | 1,6 | 36,15 | 509,8 | 0,4 | 20,85 | 60,2 | 24,08 | 1255,17 | 8,34 |
2 | 30 | 579 | 1,6 | 36,15 | 509,8 | 0,4 | -6,15 | 69,2 | 27,68 | -425,58 | -2,46 |
2 | 150 | 597 | 1,6 | 36,15 | 509,8 | 0,4 | 113,85 | 87,2 | 34,88 | 9927,72 | 45,54 |
1 | 75 | 441 | 1,6 | 36,15 | 509,8 | -0,6 | 38,85 | -68,8 | 41,28 | -2672,88 | -23,31 |
1 | 30 | 466 | 1,6 | 36,15 | 509,8 | -0,6 | -6,15 | -43,8 | 26,28 | 269,37 | 3,69 |
1 | 15 | 500 | 1,6 | 36,15 | 509,8 | -0,6 | -21,15 | -9,8 | 5,88 | 207,27 | 12,69 |
1 | 26 | 524 | 1,6 | 36,15 | 509,8 | -0,6 | -10,15 | 14,2 | -8,52 | -144,13 | 6,09 |
1 | 22 | 530 | 1,6 | 36,15 | 509,8 | -0,6 | -14,15 | 20,2 | -12,12 | -285,83 | 8,49 |
1 | 32 | 539 | 1,6 | 36,15 | 509,8 | -0,6 | -4,15 | 29,2 | -17,52 | -121,18 | 2,49 |
1 | 62 | 555 | 1,6 | 36,15 | 509,8 | -0,6 | 25,85 | 45,2 | -27,12 | 1168,42 | -15,51 |
1 | 14 | 560 | 1,6 | 36,15 | 509,8 | -0,6 | -22,15 | 50,2 | -30,12 | -1111,93 | 13,29 |
1 | 30 | 575 | 1,6 | 36,15 | 509,8 | -0,6 | -6,15 | 65,2 | -39,12 | -400,98 | 3,69 |
1 | 88 | 575 | 1,6 | 36,15 | 509,8 | -0,6 | 51,85 | 65,2 | -39,12 | 3380,62 | -31,11 |
1 | 18 | 600 | 1,6 | 36,15 | 509,8 | -0,6 | -18,15 | 90,2 | -54,12 | -1637,13 | 10,89 |
1 | 18 | 600 | 1,6 | 36,15 | 509,8 | -0,6 | -18,15 | 90,2 | -54,12 | -1637,13 | 10,89 |
1 | 40 | 615 | 1,6 | 36,15 | 509,8 | -0,6 | 3,85 | 105,2 | -63,12 | 405,02 | -2,31 |
1 | 14 | 680 | 1,6 | 36,15 | 509,8 | -0,6 | -22,15 | 170,2 | -102,12 | -3769,93 | 13,29 |
0 | 18 | 510 | 1,6 | 36,15 | 509,8 | -1,6 | -18,15 | 0,2 | -0,32 | -3,63 | 29,04 |
0 | 0 | 533 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 23,2 | -37,12 | -838,68 | 57,84 |
0 | 0 | 533 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 23,2 | -37,12 | -838,68 | 57,84 |
0 | 0 | 541 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 31,2 | -49,92 | -1127,88 | 57,84 |
0 | 0 | 541 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 31,2 | -49,92 | -1127,88 | 57,84 |
0 | 0 | 561 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 51,2 | -81,92 | -1850,88 | 57,84 |
0 | 29 | 570 | 1,6 | 36,15 | 509,8 | -1,6 | -7,15 | 60,2 | -96,32 | -430,43 | 11,44 |
0 | 0 | 585 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 75,2 | -120,32 | -2718,48 | 57,84 |
0 | 0 | 590 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 80,2 | -128,32 | -2899,23 | 57,84 |
0 | 0 | 606 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 96,2 | -153,92 | -3477,63 | 57,84 |
0 | 0 | 616 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 106,2 | -169,92 | -3839,13 | 57,84 |
0 | 0 | 640 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 130,2 | -208,32 | -4706,73 | 57,84 |
0 | 0 | 640 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 130,2 | -208,32 | -4706,73 | 57,84 |
0 | 0 | 640 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 130,2 | -208,32 | -4706,73 | 57,84 |
0 | 0 | 643 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 133,2 | -213,12 | -4815,18 | 57,84 |
0 | 10 | 650 | 1,6 | 36,15 | 509,8 | -1,6 | -26,15 | 140,2 | -224,32 | -3666,23 | 41,84 |
0 | 0 | 650 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 140,2 | -224,32 | -5068,23 | 57,84 |
0 | 0 | 661 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 151,2 | -241,92 | -5465,88 | 57,84 |
0 | 0 | 661 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 151,2 | -241,92 | -5465,88 | 57,84 |
0 | 0 | 683 | 1,6 | 36,15 | 509,8 | -1,6 | -36,15 | 173,2 | -277,12 | -6261,18 | 57,84 |
0 | 13 | 600 | 1,6 | 36,15 | 509,8 | -1,6 | -23,15 | 90,2 | -144,32 | -2088,13 | 37,04 |
Итого: | -4829,8 | -98283,3 | 1894,15 |
Тогда