Смекни!
smekni.com

Уральский федеральный округ 2 Заселение Урала (стр. 4 из 5)

С учетом отфильтрованных по правилу 3х сигм составим интервальные ряды для Х1, Х2, Y.

Вывод зависимостей результирующего-признака от факторов-признаков

Интервальный ряд для Х 1
Х 1 F 1 Ср. цена тыс.руб.
0-1 21 603
1-2 14 554
2-3 7 522
3-4 4 420
4-5 2 414
5-6 1 379
Интервальный ряд для Х 2
Х 2 F 2 Ср. цена тыс.руб.
0 - 21 25 601
21 - 42 9 551
42 - 63 7 490
63 - 84 2 420
84 - 105 4 466
105 - 126 2 417
Интервальный ряд для Y
Y F y Ср. цена тыс.руб.
379 - 422 4 400,5
422 - 465 5 443,5
465 - 508 4 486,5
508 - 551 8 529,5
551 - 594 12 572,5
594 - 637 6 615,5
637 - 683 10 660

Проведем аналитические группировки продаваемых автомобилей по времени эксплуатации и пробегу и определим групповые средние.

Построим график Y(X1)

Зависимость цены от времени эксплуатации существует и носит линейный характер, чем больше время эксплуатации, тем дешевле автомобиль.

Построим график Y(X2)

Зависимость цены от пробега существует и носит линейный характер, чем больше пробег автомобиля, тем дешевле автомобиль.

Группировка

На основанииданных статистического наблюдения выделим три типа автомобилей:

· по времени эксплуатации:

o новые автомобили от 0 до 1 года – 34 шт.

o средние автомобили от 2 до 3 лет – 13 шт.

o старые автомобили от 3 до 5 лет – 3 шт.

· по пробегу:

o новые автомобили от 0 до 50 тыс. км. – 36 шт.

o средние автомобили от 50 до 100 тыс.км. – 11 шт.

o старые автомобили от 100 до 150 тыс.км. – 3 шт.

· по цене:

o новые автомобили от 581 до 683 тыс. руб. – 19 шт.

o средние автомобили от 480 до 581 тыс. руб. – 12 шт.

o старые автомобили от 379 до 480 тыс. руб. – 12 шт.

Определение доверительного интервала

Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,9.

При вероятности 0,9 t = 1,64

Следовательно:

Таким образом, с вероятностью 0,9 можно утверждать, что средняя цена автомобиля равна:

Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,95.

При вероятности 0,95 t = 1,96

Следовательно:

Таким образом, с вероятностью 0,95 можно утверждать, что средняя цена автомобиля равна:

Определим необходимую численность выборки при определении средней цены продаваемых автомобилей, чтобы с вероятностью 0,95 предельная ошибка выборки не превышала 10 тыс.руб.

Вычисление линейных коэффициентов корреляции, вывод уравнения регрессии

На основании выборочного наблюдения оценим степень тесноты связи и проведем оценку ее существенности:

Для определения степени тесноты парной линей зависимости используем линейный коэффициент корреляции(r) :

Для вычисления линейных коэффициентов корреляции составим вспомогательную таблицу:

5 121 379 1,6 36,15 509,8 3,4 84,85 -130,8 -444,72 -11098,4 288,49
4 74 399 1,6 36,15 509,8 2,4 37,85 -110,8 -265,92 -4193,78 90,84
4 88 429 1,6 36,15 509,8 2,4 51,85 -80,8 -193,92 -4189,48 124,44
3 95 393 1,6 36,15 509,8 1,4 58,85 -116,8 -163,52 -6873,68 82,39
3 60 397 1,6 36,15 509,8 1,4 23,85 -112,8 -157,92 -2690,28 33,39
3 54 430 1,6 36,15 509,8 1,4 17,85 -79,8 -111,72 -1424,43 24,99
3 46 459 1,6 36,15 509,8 1,4 9,85 -50,8 -71,12 -500,38 13,79
2 107 455 1,6 36,15 509,8 0,4 70,85 -54,8 -21,92 -3882,58 28,34
2 47 467 1,6 36,15 509,8 0,4 10,85 -42,8 -17,12 -464,38 4,34
2 97 468 1,6 36,15 509,8 0,4 60,85 -41,8 -16,72 -2543,53 24,34
2 60 552 1,6 36,15 509,8 0,4 23,85 42,2 16,88 1006,47 9,54
2 41 565 1,6 36,15 509,8 0,4 4,85 55,2 22,08 267,72 1,94
2 57 570 1,6 36,15 509,8 0,4 20,85 60,2 24,08 1255,17 8,34
2 30 579 1,6 36,15 509,8 0,4 -6,15 69,2 27,68 -425,58 -2,46
2 150 597 1,6 36,15 509,8 0,4 113,85 87,2 34,88 9927,72 45,54
1 75 441 1,6 36,15 509,8 -0,6 38,85 -68,8 41,28 -2672,88 -23,31
1 30 466 1,6 36,15 509,8 -0,6 -6,15 -43,8 26,28 269,37 3,69
1 15 500 1,6 36,15 509,8 -0,6 -21,15 -9,8 5,88 207,27 12,69
1 26 524 1,6 36,15 509,8 -0,6 -10,15 14,2 -8,52 -144,13 6,09
1 22 530 1,6 36,15 509,8 -0,6 -14,15 20,2 -12,12 -285,83 8,49
1 32 539 1,6 36,15 509,8 -0,6 -4,15 29,2 -17,52 -121,18 2,49
1 62 555 1,6 36,15 509,8 -0,6 25,85 45,2 -27,12 1168,42 -15,51
1 14 560 1,6 36,15 509,8 -0,6 -22,15 50,2 -30,12 -1111,93 13,29
1 30 575 1,6 36,15 509,8 -0,6 -6,15 65,2 -39,12 -400,98 3,69
1 88 575 1,6 36,15 509,8 -0,6 51,85 65,2 -39,12 3380,62 -31,11
1 18 600 1,6 36,15 509,8 -0,6 -18,15 90,2 -54,12 -1637,13 10,89
1 18 600 1,6 36,15 509,8 -0,6 -18,15 90,2 -54,12 -1637,13 10,89
1 40 615 1,6 36,15 509,8 -0,6 3,85 105,2 -63,12 405,02 -2,31
1 14 680 1,6 36,15 509,8 -0,6 -22,15 170,2 -102,12 -3769,93 13,29
0 18 510 1,6 36,15 509,8 -1,6 -18,15 0,2 -0,32 -3,63 29,04
0 0 533 1,6 36,15 509,8 -1,6 -36,15 23,2 -37,12 -838,68 57,84
0 0 533 1,6 36,15 509,8 -1,6 -36,15 23,2 -37,12 -838,68 57,84
0 0 541 1,6 36,15 509,8 -1,6 -36,15 31,2 -49,92 -1127,88 57,84
0 0 541 1,6 36,15 509,8 -1,6 -36,15 31,2 -49,92 -1127,88 57,84
0 0 561 1,6 36,15 509,8 -1,6 -36,15 51,2 -81,92 -1850,88 57,84
0 29 570 1,6 36,15 509,8 -1,6 -7,15 60,2 -96,32 -430,43 11,44
0 0 585 1,6 36,15 509,8 -1,6 -36,15 75,2 -120,32 -2718,48 57,84
0 0 590 1,6 36,15 509,8 -1,6 -36,15 80,2 -128,32 -2899,23 57,84
0 0 606 1,6 36,15 509,8 -1,6 -36,15 96,2 -153,92 -3477,63 57,84
0 0 616 1,6 36,15 509,8 -1,6 -36,15 106,2 -169,92 -3839,13 57,84
0 0 640 1,6 36,15 509,8 -1,6 -36,15 130,2 -208,32 -4706,73 57,84
0 0 640 1,6 36,15 509,8 -1,6 -36,15 130,2 -208,32 -4706,73 57,84
0 0 640 1,6 36,15 509,8 -1,6 -36,15 130,2 -208,32 -4706,73 57,84
0 0 643 1,6 36,15 509,8 -1,6 -36,15 133,2 -213,12 -4815,18 57,84
0 10 650 1,6 36,15 509,8 -1,6 -26,15 140,2 -224,32 -3666,23 41,84
0 0 650 1,6 36,15 509,8 -1,6 -36,15 140,2 -224,32 -5068,23 57,84
0 0 661 1,6 36,15 509,8 -1,6 -36,15 151,2 -241,92 -5465,88 57,84
0 0 661 1,6 36,15 509,8 -1,6 -36,15 151,2 -241,92 -5465,88 57,84
0 0 683 1,6 36,15 509,8 -1,6 -36,15 173,2 -277,12 -6261,18 57,84
0 13 600 1,6 36,15 509,8 -1,6 -23,15 90,2 -144,32 -2088,13 37,04
Итого: -4829,8 -98283,3 1894,15

Тогда