Смекни!
smekni.com

Уральский федеральный округ 2 Заселение Урала (стр. 3 из 5)

Исследуем статистическое распределение признаков Y с помощью интервального вариационного ряда.

Величину интервала определим по формуле, используя полученное ранее значение m:

где Хmax – максимальное значение признака;

Хmin - минимальное значение признака;

m – число групп.

На основании полученных данных построим интервальный ряд для Y:

Интервальный ряд для Y
Y Fy Ср. цена тыс.руб.
379 - 422 4 400,5
422 - 465 5 443,5
465 - 508 4 486,5
508 - 551 8 529,5
551 - 594 12 572,5
594 - 637 7 615,5
637 - 683 10 660

Приведем графическое отображение ряда для Y в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую , моду и медиану интервального ряда распределения для Y. Формула для вычисления среднего арифметического:

где

– средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где

– значение моды;

Y0 – нижняя граница модального интервала;

h– величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующая модальному;

- частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда Y наибольшее значение частоты равно 12, т.е. это будет интервал 551-594, тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где

;

n – число единиц в совокупности;

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где

– значение медианы;

– нижняя граница медианного интервала;

– номер медианы;

– накопленная частота интервала, предшествующего медианному;

- частота медианного интервала;

По накопленной частоте определяем, что медиана будет находиться в интервале 551-594 , тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где

– дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где

– дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где

– коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где

– коэффициент ассиметрии;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Подставив значения, получим, что:

Вычислим значения коэффициента эксцесса:

где

;

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Проверка однородности и нормальности

Проверим интервальные распределения на однородность:

следовательно, совокупность для Х1 является неоднородной.

следовательно, совокупность для Х2 является неоднородной.

следовательно, совокупность для Y является однородной.

Исследуем нормальность распределения факторного признака Х1:

Интервалы значений признака-фактора Число единиц, входящих в интервал Удельный вес единиц, входящих в интервал, в общем их числе, % Удельный вес единиц, входящих в интервал, при нормальном распределении, %
1 2 3 4
(1,6-1,25)-(1,6+1,25) 0,35 – 2,85 22 44 68,3
(1,6-2×1,25) - (1,6+2×1,25)-0,9 – 4,1 49 98 95,4
(1,6-3×1,25) - (1,6+3×1,25)-2,15 – 5,35 50 100 99,7

Таким образом, сопоставляя гр.3 и гр.4 делаем вывод: распределение Х1 относительно близко к нормальному, но не подчиняется ему.

Исследуем нормальность распределения факторного признака Х2:

Интервалы значений признака-фактора Число единиц, входящих в интервал Удельный вес единиц, входящих в интервал, в общем их числе, % Удельный вес единиц, входящих в интервал, при нормальном распределении, %
1 2 3 4
(36,15-34,03)-(36,15+34,03) 2,12 – 70,18 24 48 68,3
(36,15-2×34,03) - (36,15+2×34,03)-31,91 – 104,21 47 94 95,4
(36,15-3×34,03) - (36,15+3×34,03)-65,94 – 138,24 49 98 99,7

Таким образом, сопоставляя гр.3 и гр.4 делаем вывод: распределение Х2 близко к нормальному, но не подчиняется ему.

Таким образом, проведя анализ на нормальность распределения мы можем отобрать данные не попадающие в диапазон 3х σ. Для ряда Х1 таких значений нет. Для ряда Х2 исключаем значение с пробегом 150 тыс. км.