Смекни!
smekni.com

Жизнь и деятельность Роберта Милликена (стр. 4 из 5)

“Воз­вра­ща­ясь в Чи­ка­го с это­го со­ве­ща­ния, я смот­рел из ок­на мо­ей поч­то­вой ка­ре­ты на рав­ни­ны Ма­ни­то­бы и вне­зап­но ска­зал се­бе: “Ка­кой глу­пец! Пы­тать­ся та­ким гру­бым спо­собом пре­кра­тить ис­па­ре­ние во­ды в во­дя­ных ка­пель­ках в то вре­мя, как че­ло­ве­че­ст­во за­тратило по­след­ние три­ста лет на усовершен­ствование мас­ла для смаз­ки ча­сов, стре­мясь по­лу­чить сма­зоч­ное ве­ще­ст­во, ко­то­рое вооб­ще не ис­па­ря­ет­ся!”

Ко­гда я вер­нул­ся в Чи­ка­го, у вхо­да в лабо­раторию я встре­тил Май­кель­со­на. Мы усе­лись на по­ро­ге и на­ча­ли бол­тать. Я спро­сил его, на­сколь­ко, по его мне­нию, точ­но из­ме­рил он ско­рость све­та. Он от­ве­тил, что из­ме­ре­ние про­изведено с точ­но­стью при­мер­но до од­ной де­сятитысячной. “Так вот, - ска­зал я, - я приду­маю ме­тод, при по­мо­щи ко­то­ро­го я смо­гу опре­делить ве­ли­чи­ну за­ря­да элек­тро­на с точ­но­стью до од­ной ты­сяч­ной, или грош мне це­на”.

Я не­мед­лен­но на­пра­вил­ся в мас­тер­скую и по­про­сил ме­ха­ни­ка из­го­то­вить воз­душ­ный кон­денсатор, со­стоя­щий из двух круг­лых ла­тун­ных пла­стин око­ло 10 дюй­мов в диа­мет­ре, ко­то­рые бы­ли бы за­кре­п­ле­ны на рас­стоя­нии при­мер­но шес­ти де­ся­тых дюй­ма од­на от дру­гой. В цен­тре верх­ней пла­сти­ны бы­ло про­свер­ле­но не­сколь­ко по­лу­мил­ли­мет­ро­вых от­вер­стий, сквозь ко­то­рые ка­пель­ки сма­зоч­но­го мас­ла, по­сту­паю­щие из рас­пы­ли­те­ля, мог­ли бы по­пасть в про­стран­ст­во ме­ж­ду пла­сти­на­ми. К пла­сти­нам бы­ли подклю­чены вы­во­ды мо­ей ба­та­реи на 10 ты­сяч вольт”... Мил­ли­кен на­ме­ре­вал­ся за­ря­дить ка­пель­ки мас­ла при по­мо­щи по­то­ка икс -лу­чей, как он де­лал это рань­ше с во­дой.

В те­че­ние трех лет, с 1909 по 1912 год, он по­свя­щал все свое вре­мя опы­там над капель­ками сма­зоч­но­го мас­ла.

“Ме­ня за­ча­ро­вы­ва­ла та аб­со­лют­ная уве­ренность, с ко­то­рой мож­но бы­ло точ­но пересчи­тать ко­ли­че­ст­во элек­тро­нов, си­дев­ших на дан­ной ка­п­ле, будь это один элек­трон или лю­бое их чис­ло, до сот­ни вклю­чи­тель­но. Для это­го тре­бовалось лишь за­ста­вить ис­сле­дуе­мую ка­п­лю про­де­лать боль­шую се­рию пе­ре­ме­ще­нии вверх и вниз, точ­но из­ме­рив вре­мя, по­тра­чен­ное ею на ка­ж­дое пе­ре­ме­ще­ние, а за­тем вы­счи­тать наи­меньшее об­щее крат­ное до­воль­но боль­шой се­рии ско­ро­стей.

Для то­го что­бы по­лу­чить не­об­хо­ди­мые дан­ные по од­ной от­дель­ной ка­п­ле, ино­гда тре­бовалось не­сколь­ко ча­сов. Од­на­ж­ды г-жа Мил­ликен и я при­гла­си­ли к обе­ду гос­тей. Ко­гда про­би­ло шесть ча­сов, у ме­ня бы­ла все­го лишь по­ло­ви­на не­об­хо­ди­мых мне дан­ных. По­это­му я вы­ну­ж­ден был по­зво­нить г-же Мил­ли­кен по те­ле­фо­ну и ска­зать, что уже в те­че­ние полуто­ра ча­сов на­блю­даю за ио­ном и дол­жен закон­чить ра­бо­ту. Я про­сил ее обе­дать без ме­ня. Позд­нее гос­ти осы­па­ли ме­ня ком­пли­мен­та­ми по по­во­ду мое­го при­стра­стия к до­маш­не­му хо­зяйству, по­то­му что, как они объ­яс­ня­ли, г-жа Мил­ли­кен со­об­щи­ла им, что я в те­че­ние по­лутора ча­сов сти­рал и гла­дил и дол­жен был за­кон­чить ра­бо­ту”(англ. “watch an ion”- на­блю­дать за ио­ном; “washed and ironed” - сти­рал и гла­дил).

Мил­ли­кен опуб­ли­ко­вал ре­зуль­та­ты сво­их опы­тов осе­нью 1910 го­да и ока­зал­ся в цен­тре вни­ма­ния фи­зи­ков все­го ми­ра. Не­мец­кая шко­ла, в том чис­ле и Рент­ген, от­крыв­ший за 15 лет до это­го икс - лу­чи, пол­но­стью из­ме­ни­ла свою точ­ку зре­ния. Пред­ста­ви­тель этой шко­лы, ве­ликий уче­ный в об­лас­ти фи­зи­че­ской хи­мии Ост­вальд в 1912 го­ду пи­сал: “Те­перь я убеж­ден... По­лу­чен­ные опыт­ным пу­тем до­ка­за­тель­ст­ва... ко­то­рые лю­ди без­ус­пеш­но ис­ка­ли в те­чение со­тен и ты­сяч лет... те­перь... да­ют воз­можность да­же са­мо­му ос­то­рож­но­му уче­но­му го­во­рить о том, что тео­рия атом­но­го строе­ния ве­ще­ст­ва экс­пе­ри­мен­таль­но до­ка­за­на”.

Ре­во­лю­ция в об­лас­ти све­та

В пе­ри­од с 1921 по 1945 гг. Мил­ли­кен - ди­рек­тор Ла­бо­ра­то­рии Нор­ма­на Брид­жа Ка­ли­фор­ний­ско­го тех­но­ло­ги­че­ско­го ин­сти­ту­та.

В 1921 го­ду Аль­берт Эйн­штейн был удо­стоен Но­бе­лев­ской пре­мии за раз­ра­бот­ку тео­рии, объ­яс­нив­шей фо­то­элек­три­че­ский эф­фект. Спус­тя два го­да Ро­берт Мил­ли­кен полу­чил Но­бе­лев­скую пре­мию за про­ве­де­ние опы­та, под­твер­див­ше­го тео­рию Эйн­штей­на. Тео­рия Эйн­штей­на бы­ла вы­дви­ну­та в 1905 го­ду. Ве­ликий экс­пе­ри­мент Мил­ли­ке­на был про­ве­ден поч­ти де­сять лет спус­тя. Двой­ное при­су­ж­де­ние пре­мии оз­на­ча­ло ус­пех од­ной из са­мых вели­ких ре­во­лю­ций в об­лас­ти фи­зи­ки.

Иса­ак Нью­тон обо­га­тил фи­зи­ку дву­мя тео­риями: пер­вая ка­са­лась за­ко­нов дви­же­ния тел; со­глас­но вто­рой свет пред­став­лял со­бой ско­пище кро­шеч­ных час­тиц све­тя­щей­ся ма­те­рии. Пер­вая тео­рия Нью­то­на при­нес­ла ему репута­цию ге­ни­аль­но­го уче­но­го. И толь­ко бла­го­да­ря его пре­сти­жу бы­ла при­ня­та вто­рая тео­рия - о кор­пус­ку­ляр­ной струк­ту­ре све­та, хо­тя она бы­ла зна­чи­тель­но сла­бее пер­вой и объ­яс­ня­ла все­го два из всех из­вест­ных свойств све­та.

По Нью­то­ну, от­ра­же­ние - это про­сто от­ска­ки­ва­ние уп­ру­гих час­тиц све­та от отра­жающей по­верх­но­сти. Реф­рак­ция же, прелом­ление све­то­вых лу­чей при пе­ре­хо­де из ме­нее плот­ной сре­ды, та­кой, на­при­мер, как воз­дух, в бо­лее плот­ную, как, на­при­мер, во­да, име­ло ме­сто в ре­зуль­та­те из­ме­не­ния ско­ро­сти частич­ки све­та в мо­мент про­хо­ж­де­ния ее сквозь по­верхность бо­лее плот­ной сре­ды. Нью­то­нов­ская тео­рия све­та не мог­ла объ­яс­нить интерферен­ции, ди­фрак­ции и по­ля­ри­за­ции.

К на­ча­лу XVIII сто­ле­тия ста­ла привле­кать вни­ма­ние вол­но­вая тео­рия све­та, выдви­нутая со­вре­мен­ни­ком Нью­то­на - Гюй­ген­сом. По этой тео­рии свет со­сто­ит из виб­ра­ции в эфи­ре. Ве­ли­кий фран­цуз­ский фи­зик Фре­нель ма­тематически до­ка­зал, что ес­ли свет действи­тельно вол­но­вое яв­ле­ние, то все его наблюда­емые про­яв­ле­ния лег­ко мож­но объ­яс­нить. Спус­тя пол­сто­ле­тия Джемс Мак­свелл под­кре­пил вол­но­вую тео­рию све­та, тео­ре­ти­че­ски до­ка­зав, что свет яв­ля­ет­ся виб­ра­ци­ей элек­три­че­ских и маг­нит­ных волн. До по­след­не­го де­ся­ти­ле­тия XIX ве­ка в тео­рии Мак­свел­ла не бы­ло, каза­лось, ни­ка­ких про­ти­во­ре­чий.

В 1887 го­ду Герц за­ме­тил, что свет, осо­бенно ульт­ра­фио­ле­то­вые лу­чи, за­ря­жа­ли ме­таллические по­верх­но­сти элек­три­че­ст­вом. Том­сон до­ка­зал, что по­ло­жи­тель­ный за­ряд на по­верх­но­сти ме­тал­ла был след­ст­ви­ем мгновен­ного ис­пус­ка­ния им от­ри­ца­тель­но за­ря­жен­ных элек­тро­нов.

Аль­берт Эйн­штейн был един­ст­вен­ным фи­зиком, по­няв­шим, что в этом таи­лось проти­воречие, ко­то­рое вол­но­вая тео­рия све­та не мо­жет раз­ре­шить. В 1905 го­ду он вы­ска­зал пред­положение, что фо­то­элек­три­че­ский эф­фект мож­но объ­яс­нить, толь­ко воз­вра­тив­шись к кор­пускулярной тео­рии све­та, в ко­то­рую сле­ду­ет вне­сти не­ко­то­рые важ­ные из­ме­не­ния.

По мне­нию Эйн­штей­на, про­ти­во­ре­чие за­ключалось в сле­дую­щем: чем боль­ше све­та па­да­ет на ме­тал­ли­че­скую по­верх­ность, тем боль­ше вы­де­ля­ет­ся элек­тро­нов; од­на­ко энер­гия ка­ж­до­го от­дель­но­го элек­тро­на с из­ме­не­ни­ем ин­тен­сив­но­сти све­та не из­ме­ня­ет­ся, хо­тя, по тео­рии Мак­свел­ла, ин­тен­сив­ность све­та слу­жит ме­ри­лом его энер­гии.

Эйн­штейн пред­ло­жил сле­дую­щее объясне­ние: луч све­та со­сто­ит из по­то­ка кро­шеч­ных кор­пус­кул, ка­ж­дая из ко­то­рых не­сет опреде­ленную энер­гию. Энер­гия кор­пус­ку­лы пропор­циональна цве­ту, или, вы­ра­жа­ясь клас­си­че­ским язы­ком, час­то­те све­та, а не его ам­пли­ту­де, как за­яв­лял Мак­свелл. Ко­гда свет па­да­ет на твер­дое ве­ще­ст­во, не­ко­то­рые из эйнштейнов­ских кор­пус­кул энер­гии по­гло­ща­ют­ся. Коли­чество по­гло­щае­мой энер­гии в не­ко­то­рых слу­чаях ока­зы­ва­ет­ся на­столь­ко боль­шим, что элек­тро­ны по­лу­ча­ют воз­мож­ность по­ки­нуть ато­мы, в ко­то­рых они на­хо­ди­лись. Энер­гия этих ос­во­бо­ж­ден­ных “фо­то­элек­тро­нов” дол­жна по­это­му быть аб­со­лют­но рав­ной энер­гии пой­ман­ных кор­пус­кул све­та, на­зы­вае­мых “кван­та­ми”, ми­нус ко­ли­че­ст­во энер­гии, нуж­ной для то­го, что­бы вы­рвать элек­тро­ны из ато­мов.

Это по­след­нее ко­ли­че­ст­во, “ра­бо­та вы­хо­да”, мо­жет быть не­по­сред­ст­вен­но из­ме­ре­но.

Эйн­штейн со­об­щит об этом в фор­ме урав­нения, в ко­то­ром бы­ла ус­та­нов­ле­на связь меж­ду ско­ро­стью вы­ле­тев­ше­го элек­тро­на, энерги­ей пой­ман­но­го кван­та све­та и с ра­бо­той вы­хо­да”.

“Та­кая кор­пус­ку­ляр­ная тео­рия, гово­рил Мил­ли­кен, - не бы­ла под­твер­жде­на экспе­риментально, за ис­клю­че­ни­ем на­блю­де­ний, про­ве­ден­ных Ле­нар­дом в 1900 го­ду и сво­дившихся к то­му, что энер­гия, с ко­то­рой элект­роны вы­ле­та­ют из цин­ко­вой пла­стин­ки, кажет­ся, не за­ви­сит от ин­тен­сив­но­сти све­та. Я ду­маю, пра­виль­но бу­дет ска­зать, что мысль Эйн­штей­на о кван­тах све­та, не­су­щих­ся в про­странстве в фор­ме им­пуль­сов, или, как мы на­зываем их те­перь, “фо­то­нов”, при­бли­зи­тель­но до 1915 го­да не име­ла прак­ти­че­ски ни од­но­го убе­ж­ден­но­го сто­рон­ни­ка.

То­гда, на тех ран­них эта­пах, да­же сам Эйн­штейн не от­стаи­вал эту мысль с достаточ­ной ре­ши­тель­но­стью и оп­ре­де­лен­но­стью”.

Мил­ли­кен то­же да­ле­ко не был убе­ж­ден в пра­во­те Эйн­штей­на, но, по­сколь­ку ла­бо­ра­то­рия в Чи­ка­го, ру­ко­во­ди­мая Май­кель­со­ном, про­во­ди­ла очень мно­го экс­пе­ри­мен­тов, основан­ных на вол­но­вой тео­рии све­та, Мил­ли­кен ре­шил раз и на­все­гда про­ве­рить ги­по­те­зу Эйн­штейна.