Смекни!
smekni.com

Жизнь и деятельность Роберта Милликена (стр. 3 из 5)

В 1897 го­ду Том­сон опуб­ли­ко­вал класси­ческую ста­тью под на­зва­ни­ем “Ка­тод­ные лу­чи”, в ко­то­рой он сде­лал об­зор всех опы­тов с ка­тодными лу­ча­ми. Ста­тья вклю­ча­ла так­же опи­сание не­ко­то­рых из его соб­ст­вен­ных опы­тов. Он при­шел к вы­во­ду, что ка­тод­ный луч - это на са­мом де­ле по­ток дви­жу­щих­ся при вы­со­ком на­пря­же­нии от­ри­ца­тель­но за­ря­жен­ных час­тиц го­раз­до мень­ше­го раз­ме­ра, чем са­мый ма­лый атом. Ис­поль­зуя пред­ло­жен­ное Сто­ни на­зва­ние, Том­сон дал этой час­ти­це имя “элек­трон”. Он ут­вер­ждал, что фо­то­элек­три­че­ский эф­фект есть не что иное, как вы­би­ва­ние этих элек­тро­нов из ме­тал­ли­че­ской по­верх­но­сти лу­чом ультрафиоле­тового све­та. Том­сон на­стаи­вал и на том, что элек­трон был так­же со­став­ной ча­стью лу­чей Бек­ке­ре­ля.

Ут­вер­жде­ние Том­со­на ка­за­лось фантасти­ческим це­ло­му по­ко­ле­нию уче­ных, ко­то­рые не хо­те­ли при­зна­вать ги­по­те­зу, что ма­те­рия состо­ит из ато­мов. Пред­по­ло­же­ние, что су­ще­ст­ву­ет час­ти­ца еще мень­шая, чем атом, вы­зва­ло бу­рю. Не­ко­то­рые уче­ные бы­ли го­то­вы со­гла­сить­ся с тем, что элек­три­че­ст­во - это по­ток очень ма­лень­ких час­тиц, имею­щих элек­три­че­ский за­ряд, но еще на­до бы­ло до­ка­зать, что ка­ж­дая та­кая час­ти­ца об­ла­да­ла оп­ре­де­лен­ной мас­сой и опре­деленным элек­три­че­ским за­ря­дом. Нуж­но бы­ло про­вес­ти опыт, что­бы раз и на­все­гда до­ка­зать, что элек­тро­ны су­ще­ст­ву­ют на са­мом де­ле.

В 90-х го­дах про­шло­го ве­ка был все же один не­мец­кий уче­ный, ко­то­рый не раз­де­лял эфир­ную тео­рию икс - лу­чей. Его зва­ли Аль­берт Эйн­штейн. На это­го уче­но­го про­из­вел глу­бо­кое впе­чат­ле­ние опыт Май­кель­со­на с интерферо­метром. И еще один не­мец воз­ра­жал про­тив эфир­ной тео­рии - Макс Планк. Он сде­лал в рав­ной сте­пе­ни ра­ди­каль­ное пред­по­ло­же­ние: лу­чевую энер­гию, т. е. свет, сле­ду­ет пред­став­лять в ви­де “кван­тов”, или мель­чай­ших час­тиц. Эйн­штейн ис­поль­зо­вал кван­то­вую тео­рию План­ка для объ­яс­не­ния фо­то­элек­три­че­ско­го эф­фек­та и со­ста­вил изу­ми­тель­ное по кра­со­те сум­мирующее урав­не­ние. Но в то вре­мя мыс­ли Эйн­штей­на о фо­то­элек­три­че­ском эф­фек­те не встре­ти­ли до­ве­рия.

Мил­ли­кен - один из не­мно­гих американ­ских ас­пи­ран­тов, ра­бо­тав­ших то­гда в Ев­ро­пе, - был тем че­ло­ве­ком, ко­то­ро­му су­ж­де­но бы­ло пос­ле дол­гих лет тру­дов и раз­ду­мий по­ста­вить два важ­ней­ших экс­пе­ри­мен­та эпо­хи: один опыт под­твер­дил пра­виль­ность элек­трон­ной тео­рии Том­со­на; вто­рой дал до­ка­за­тель­ст­во тео­рии фо­тоэлектрического эф­фек­та Эйн­штей­на и то­го, что кван­то­вая тео­рия - не­что боль­шее, чем “бред” ма­те­ма­ти­ка.

Элек­трон на ка­п­ле мас­ла

“К кон­цу пер­во­го де­ся­ти­ле­тия, про­ве­ден­но­го в Чи­каг­ском уни­вер­си­те­те (1906 год), я все еще был пре­по­да­ва­те­лем-ас­си­стен­том, - пи­сал Ро­берт Мил­ли­кен. - У ме­ня рос­ло двое сы­но­вей. Я на­чал стро­ить дом, рас­счи­ты­вая оп­ла­тить рас­хо­ды за счет мо­их го­но­ра­ров, но я знал, что до сих пор не за­ни­мал сколь­ко-ни­будь за­мет­но­го мес­та сре­ди фи­зи­ков-исследо­вателей”.

Учеб­ник, над ко­то­рым он ра­бо­тал, был уже в из­да­тель­ст­ве. На­ко­нец он смог при­сту­пить кин­тен­сив­ной ис­сле­до­ва­тель­ской ра­бо­те. В его уче­ной карь­е­ре на­чал­ся но­вый этап.

“Все фи­зи­ки ин­те­ре­со­ва­лись ве­ли­чи­ной элек­три­че­ско­го за­ря­да элек­тро­на, и, тем не ме­нее, до сих пор не уда­лось ее из­ме­рить...”

Мно­го по­пы­ток про­вес­ти это ре­шаю­щее из­ме­ре­ние уже пред­при­нял Дж. Дж. Том­сон, но про­шло де­сять лет ра­бо­ты, и ас­си­стент Том­со­на Г. Виль­сон со­об­щил, что по­сле один­на­дца­ти раз­лич­ных из­ме­ре­ний они по­лу­чи­ли один­на­дцать раз­лич­ных ре­зуль­та­тов.

Пре­ж­де чем на­чать ис­сле­до­ва­ния по свое­му соб­ст­вен­но­му ме­то­ду, Мил­ли­кен ста­вил опы­ты по ме­то­ду, при­ме­няв­ше­му­ся в Кембридж­ском уни­вер­си­те­те. Тео­ре­ти­че­ская часть экспе­римента за­клю­ча­лась в сле­дую­щем. Мас­са те­ла оп­ре­де­ля­лась пу­тем из­ме­ре­ния дав­ле­ния, про­из­во­ди­мо­го те­лом под воз­дей­ст­ви­ем си­лы тя­же­сти на ча­шу ве­сов. Ес­ли со­об­щить беско­нечно ма­лой час­ти­це ве­ще­ст­ва элек­три­че­ский за­ряд и ес­ли при­ло­жить на­прав­лен­ную вверх элек­три­че­скую си­лу, рав­ную си­ле тя­же­сти, на­прав­лен­ной вниз, то эта час­ти­ца бу­дет на­ходиться в со­стоя­нии рав­но­ве­сия, и фи­зик мо­жет рас­счи­тать ве­ли­чи­ну элек­три­че­ско­го заря­да. Ес­ли в дан­ном слу­чае час­ти­це бу­дет сооб­щен элек­три­че­ский за­ряд од­но­го элек­тро­на, мож­но бу­дет вы­счи­тать ве­ли­чи­ну это­го за­ря­да.

Кем­бридж­ская тео­рия бы­ла впол­не логич­ной, но фи­зи­ки ни­как не мог­ли соз­дать при­бор, при по­мо­щи ко­то­ро­го мож­но бы­ло бы за­ни­мать­ся ис­сле­до­ва­ния­ми от­дель­ных час­тиц ве­ществ. Им при­хо­ди­лось до­воль­ст­во­вать­ся на­блю­де­ни­ем за по­ве­де­ни­ем об­ла­ка из водя­ных ка­пель, за­ря­жен­ных элек­три­че­ст­вом. В ка­мере, воз­дух из ко­то­рой был час­тич­но уда­лен, соз­да­ва­лось об­ла­ко па­ра. К верх­ней час­ти ка­меры под­во­дил­ся ток. Че­рез оп­ре­де­лен­ное вре­мя ка­пель­ки ту­ма­на в об­ла­ке ус­по­каи­ва­лись. За­тем сквозь ту­ман про­пус­ка­ли икс - лу­чи, и водя­ные ка­п­ли по­лу­ча­ли элек­три­че­ский за­ряд.

При этом ис­сле­до­ва­те­ли по­ла­га­ли, что элек­три­че­ская си­ла, на­прав­лен­ная вверх, к на­ходящейся под вы­со­ким на­пря­же­ни­ем крыш­ке ка­ме­ры, долж­на яко­бы удер­жи­вать ка­п­ли от па­де­ния. Од­на­ко на де­ле не вы­пол­ня­лось ни од­но из слож­ных ус­ло­вий, при ко­то­рых, и толь­ко при ко­то­рых, час­ти­цы мог­ли бы на­хо­дить­ся в со­стоя­нии рав­но­ве­сия.

Мил­ли­кен на­чал ис­кать но­вый путь реше­ния про­бле­мы. Де­ло бы­ло не в ап­па­ра­те, а в том, как им поль­зо­вать­ся. Он внес в его кон­струкцию ряд не­боль­ших из­ме­не­ний, ко­то­рые “впер­вые по­зво­ли­ли про­вес­ти все из­ме­ре­ния на од­ной и той же от­дель­ной ка­пель­ке”.

“В ка­че­ст­ве пер­во­го ша­га в об­лас­ти усо­вер­шен­ст­во­ва­ния в 1906 го­ду скон­ст­руи­ро­вал не­боль­шую по га­ба­ри­там ба­та­рею на 10 ты­сяч вольт (что са­мо по се­бе бы­ло в то вре­мя не­ма­лым дос­ти­же­ни­ем), ко­то­рая соз­да­ва­ла по­ле, дос­та­точ­но силь­ное для то­го, что­бы удер­живать верх­нюю по­верх­ность об­ла­ка Виль­сона в под­ве­шен­ном, как “гроб Ма­го­ме­та”, со­стоя­нии. Ко­гда у ме­ня все бы­ло го­то­во и ко­гда об­ра­зо­ва­лось об­ла­ко, я по­вер­нул выклю­чатель и об­ла­ко ока­за­лось в элек­три­че­ском по­ле. В то же мгно­ве­ние оно на мо­их гла­зах рас­тая­ло, дру­ги­ми сло­ва­ми - от це­ло­го об­ла­ка не ос­та­лось и ма­лень­ко­го ку­соч­ка, ко­то­рый мож­но бы­ло бы на­блю­дать при по­мо­щи конт­рольного оп­ти­че­ско­го при­бо­ра, как это де­лал Виль­сон и со­би­рал­ся сде­лать я. Как мне снача­ла по­ка­за­лось, бес­след­ное ис­чез­но­ве­ние обла­ка в элек­три­че­ском по­ле ме­ж­ду верх­ней и ниж­ней пла­сти­на­ми оз­на­ча­ло, что экс­пе­ри­мент за­кон­чил­ся без­ре­зуль­тат­но... Од­на­ко, по­вто­рив опыт, я ре­шил, что это яв­ле­ние го­раз­до бо­лее важ­ное, чем я пред­по­ла­гал. По­втор­ные опы­ты по­ка­за­ли, что по­сле рас­сеи­ва­ния об­ла­ка в мощ­ном элек­три­че­ском по­ле на его мес­те мож­но бы­ло раз­ли­чить не­сколь­ко от­дель­ных во­дя­ных ка­пель”.

Соз­да­вая мощ­ное элек­три­че­ское по­ле, Мил­ли­кен не­из­мен­но рас­сеи­вал об­ла­ко. От не­го ос­та­ва­лось очень не­боль­шое чис­ло час­тиц, мас­са и элек­три­че­ский за­ряд ко­то­рых находи­лись в иде­аль­ном рав­но­ве­сии. На са­мом де­ле, имен­но те ка­п­ли, ко­то­рые бы­ли те­перь уда­ле­ны из ка­ме­ры, на­ру­ша­ли все пред­ше­ст­во­вав­шие из­ме­ре­ния.

“Я на­блю­дал при по­мо­щи мое­го коротко­фокусного те­ле­ско­па за по­ве­де­ни­ем этих на­хо­дя­щих­ся в рав­но­ве­сии ка­пе­лек в элек­три­че­ском по­ле. Не­ко­то­рые из них на­чи­на­ли мед­ленно дви­гать­ся вниз, а за­тем, по­сте­пен­но те­ряли вес в ре­зуль­та­те ис­па­ре­нии, ос­та­нав­ли­ва­лись, по­во­ра­чи­ва­лись... и мед­лен­но на­чи­на­ли дви­гать­ся вверх, так как си­ла тя­же­сти все умень­ша­лась вслед­ст­вие ис­па­ре­ния... Ес­ли элек­три­че­ское по­ле вне­зап­но ис­че­за­ло, все на­ходящиеся в рав­но­ве­сии ка­пель­ки, по­хо­жие на звез­доч­ки на тем­ном по­ле, на­чи­на­ли па­дать - од­ни мед­лен­но, дру­гие го­раз­до бы­ст­рее. Эти по­след­ние ка­пель­ки ока­за­лись во взве­шен­ном со­стоя­нии по­то­му, что они не­сли на се­бе два, три, че­ты­ре, пять и боль­ше элек­тро­нов вме­сто од­но­го... Это бы­ло, на­ко­нец, пер­вое от­чет­ли­вое, яс­ное и не­дву­смыс­лен­ное до­ка­за­тель­ст­во то­го, что элек­три­че­ст­во еди­но по струк­ту­ре”.

Это по­след­нее на­блю­де­ние бы­ло в то вре­мя фак­ти­че­ски зна­чи­тель­но бо­лее важ­ным, чем из­ме­ре­ние за­ря­да элек­тро­на.

Мил­ли­кен за­кон­чил пер­вые из­ме­ре­ния за­ряда элек­тро­на в сен­тяб­ре 1909 го­да и незамед­лительно вы­сту­пил с со­об­ще­ни­ем на совеща­нии Бри­тан­ской ас­со­циа­ции со­дей­ст­вия нау­ке в Вин­ни­пе­ге. Хо­тя его име­ни не бы­ло в спи­ске док­лад­чи­ков, ему да­ли воз­мож­ность вы­сту­пить. Прав­да, он не пи­тал ни­ка­ких ил­лю­зий. Он хоро­шо по­ни­мал, что ре­зуль­та­ты его опы­тов явля­ются лишь пред­ва­ри­тель­ны­ми и что с по­мо­щью бо­лее со­вер­шен­ных в тех­ни­че­ском от­но­ше­нии при­бо­ров мо­гут быть по­лу­че­ны бо­лее точ­ные дан­ные.