Смекни!
smekni.com

Параллельный генетический алгоритм (стр. 2 из 2)

Общая тенденция в многообщинных параллельных ГА – это использование статичных топологий, которые определяются до запуска алгоритма и остаются неизменными.

Другой метод конструирования топологии – это создание динамической топологии. В этом случае община не ограничена связями с некоторым фиксированным количеством общин; вместо этого мигранты посылаются в общины, которые удовлетворяют некоторому критерию. В качестве подобного критерия берется мера разнообразия популяции или мера генотипического расстояния между двумя популяциями (или расстояния от характерной особи популяции, например, наилучшей). При такой архитектуре необходимы механизмы отслеживания событий в соседних популяциях, причем если в одной из соседних популяций некоторое событие наступило, то следует ожидать события и во второй популяции.

Частота миграций также имеет большое влияние на конечное решение. Как известно, слишком частые миграции приводят к вырождению популяций, а редкие, наоборот, к снижению сходимости. Для регулирования частоты миграции применяются различные методы, которые можно разбить на два типа: адаптивные и событийные. В первом случае методы адаптации используются для настройки частоты миграции в процессе работы алгоритма. Во втором случае применяются методы, определяющие необходимость миграции, т.е. миграция осуществляется только при наступлении какого-либо события.

Для отбора особей для миграции применяются механизмы селекции. Известно ,что отдельные хромосомы могут содержать «хорошие» фрагменты генетического кода, но данные части могут находиться в хромосомах, которые отличаются плохой приспособленностью. Но в то же время, исключение подобных может привести к тому ,что произойдет преждевременная сходимость ,либо пропуск глобального оптимума.

Использование различных стратегий накладывает главное ограничение –необходимость формирования однотипной структуры хромосомы. Но эффект ,который возможен при удачном формировании, может быть гораздо большим, чем при использовании одной структуры ГА во всех популяциях.

Вывод

Для многообщинных генетических алгоритмов требуется исследовать влияние структуры взаимосвязей на работу параллельного ГА . Сложность этих вопросов заключается в трудности точного описания процесса миграции особей.

В дальнейшем наиболее целесообразным будет внедрение гибридных методов. Внедрение таких методов в параллельные генетические алгоритмы ,на различных этапах функционирования ,позволит повысить точность и эффективность алгоритма.

Список литературы

Курейчик В.М., Кныш Д.С. Параллельный генетический алгоритм. Модели и проблемы построения // -С.1-3.

2. Интернет-ресурс. - Режим доступа : www/ URL: http://www.gotai.net/ - сайт по ИИ.

3. Гладков Л.А., Курейчик В.М., Курейчик В.В. Генетические алгоритмы [Текст]/под ред. В.М. Курейчика . – 2-е издн., испр. и доп. – М.:ФИЗМАТЛИТ ,2006 .-320 с.

4. Иванов Д.Е., Чебанов П.А. Взаимодействие компонент в распределённых генетических алгоритмах генерации тестов / Д.Е. Иванов, П.А. Чебанов // Наукові праці Донецького національного технічного університету. Серія: “Обчислювальна техніка та автоматизація”. Випуск 16(147).- Донецьк: ДонНТУ.- 2009.- С.121-127.

5. Grosso P.B. Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in a Multilocus Model// Unpublished doctoral dissertation, The University of Michigan. (University Microfilms №8520908), 1985.