Ю. Сидельников, С. Салтыков
Введение
Актуальность задачи повышения точности экономических прогнозов и на этой основе качества управленческих решений связана с увеличением масштабов преобразований экономики и изменением экономического уклада. Одной из мер, помогающих решить эту задачу, является обоснованный выбор метода экономического прогнозирования.
Есть предположение, что в наибольшей степени этот обоснованный выбор определяется сложностью прогнозной задачи (1). Поэтому целью исследования является разработка алгоритма определения уровня сложности прогнозной задачи оценивания, что, в свою очередь, поможет установить соответствие между задачами определенного вида и группами экспертных методов.
Ретроспективный анализ исследований по данной теме
В научной литературе по экспертным методам и экспертному прогнозированию существует два основных подхода к отбору лучшей методики или процедуры. Первый подход сводится к попарному сопоставлению нескольких методик и отражен, как правило, в зарубежной литературе.
Так, например, в 1960-е гг. в корпорации РЭНД под руководством Нормана Дэлки была проведена серия экспериментальных исследований (2), выявивших следующий факт: модификация традиционного метода дельфи, так называемый метод дельфи-II, использующий многоточечные оценки, в большинстве случаев предпочтительнее метода дельфи.
В начале 1970-х гг. сотрудник Питсбургского университета Дэвид Форд провел серию аналогичных тестовых экспериментов по сопоставлению трех методик: стандартной дельфи, дельфи-II и собственной итеративной процедуры, названной автором «шанг» (3). Автор получил следующие результаты: его собственная методика повышала точность оценок на последнем туре процедуры и, значит, имеет право на существование, а относительно сопоставления дельфи и дельфи-II результат был прямо противоположен тестовым экспериментам Брайана Берниса Брауна, Сэмюэля Кохрана и Нормана Делки.
Среди современных зарубежных работ в рамках такого же подхода необходимо отметить исследования Международного института системного анализа (4). Авторы рассматривают проблему выбора лучшего метода прогнозирования для конкретного класса задач — демографического прогнозирования. Они рассмотрели достоинства и недостатки применения различных методов для их задачи и сопоставили статистические методы, метод дельфи и разработанную авторами прогностическую процедуру. Сравнив различные варианты, авторы предлагают отобрать как наиболее подходящую для их задачи ими же разработанную процедуру.
В СССР и России исследования, направленные на разработку процедур отбора наиболее эффективных методов для решения прогнозных задач, проводились лишь эпизодически и практически всегда в рамках другого подхода. В рамках такого подхода:
методики и методы не сопоставляются попарно;
формулируются требования к методу на основе апостериорного анализа прогноза. Например, в статье С.Н. Селиванова и И.В. Гущина «К вопросу о выборе метода прогнозирования организационной системы на основе анализа ошибок прогноза» (5) утверждается, что метод прогнозирования должен выбираться с наименьшей трудоемкостью при обеспечении требуемой точности: «Часто основным критерием при выборе метода прогнозирования или конкретной прогнозирующей системы является общая трудоемкость исследования с применением данной методики при обеспечении требуемой точности прогноза. Общая трудоемкость прогнозирующей системы (методики) прямо обусловливает время и стоимость ее разработки, время, затрачиваемое на исследование. Наконец, чем меньше общая трудоемкость разработки методики и подготовки ее к исследованию (при сохранении заданной точности), тем более обширные исследования могут быть проведены с помощью данной методики»;
поиск исследователей направлен на выявление соответствия между методом и объектом. Например, в брошюре Э.С. Минаева и Р.И. Песелевой «Рекомендации по выбору и комплексированию методов прогнозирования» (6) утверждается, что возможна классификация объектов и методов прогнозирования по одному признаку и как следствие «совпадения свойств метода прогнозирования и объекта, соответствующих единому признаку, означает, что метод и объект адаптивны друг к другу»;
отбор наиболее эффективного метода связан с поиском соответствия между методом и задачей и в работе Ю.В. Сидельникова «Системный анализ технологии экспертного прогнозирования» связан только лишь с экспертными методами.
Предложения по созданию новой процедуры установления соответствия между прогнозной задачей и методом
Почему же столь интересные и серьезные исследования, упомянутые выше, не нашли практического применения при отборе наиболее эффективных экспертных методов для решения прогнозных задач? Мы предполагаем, и в этом будут состоять наши гипотезы, что для решения задачи по отбору наиболее эффективной процедуры (метода) необходимо учесть нижеследующие дополнительные требования (условия):
Четко определить подмножество задач, для которых может быть использована соответствующая процедура отбора наиболее эффективных экспертных методов. В данной статье, говоря о задаче, всегда подразумеваем прогнозную задачу оценивания. Более детально этот вопрос здесь не рассматривается.
Четко определить подмножество экспертных методов. В рамках данной статьи будем рассматривать процедуры (методы), позволяющие получить новую информацию, в том числе и для участвующих в них специалистов.
Учитывать многокритериальность реальных задач, используя различные модели проблемной ситуации (7, 8).
Рассмотреть различные виды характеристик: не только метода и объекта прогнозирования, но и самой прогнозной задачи (9), а также учитывать характеристики кортежа «задача — метод». Укажем примеры характеристик каждого из упомянутых видов, на основе которых необходимо отбирать метод и которые мы будем использовать в данной работе. Одной из основных характеристик любого из экспертных оценочных методов является число опрашиваемых специалистов и форма подачи информации, в которой эксперты дают свои заключения.
В отличие от С.Н. Селиванова и И.В. Гущина, мы рассматриваем трудоемкость исследования с применением данной методики как характеристику не методики или метода, а пары «задача — метод». Точно так же характеристикой кортежа «задача — метод» являются точность решений данного класса задач с помощью рассматриваемой группы методов или методик. Основные характеристики задачи оценивания будут подробно рассмотрены в следующем разделе.
Две основные характеристики задачи оценивания
Предложим и опишем две характеристики задачи оценивания, существенные для выбора наиболее эффективного метода ее решения. Мы считаем, что ими являются сложность задачи и ее обширность (10).
Поясним понятие «сложность задачи оценивания». В рамках данной статьи это понятие будет использоваться как синоним понятий «нетривиальность», «креативность». Для раскрытия этого понятия применим понятие «парадигмальное основание», играющее, по сути, роль основополагающего утверждения, используя которое, можно вывести основы новой теории, направления или же объяснить ранее не понятное явление, используя набор объясняющих правил. Примерами таких парадигмальных оснований могут служить:
утверждение о наличии различных логик (Аристотелева, трехзначная, нечеткая, конфуцианская и т.д.) Так, например, явление корпускулярно-волнового дуализма трудно пояснить в рамках Аристотелевой логики, но оно не вызывает затруднений, если исходить из парадигмального основания, что надо основываться на трехзначной логике, где принцип исключения третьего отсутствует;
утверждение о возможности искривленности реального трехмерного пространства, описываемого некоторой геометрией. Например, феномен гравитации в общей теории относительности трудно описать исходя из того, что геометрия пространства-времени описывается геометрией Евклида, но достаточно просто исходя из того, что реальное пространство адекватней описывать, используя геометрию Минковского.
Кроме того, в данной работе мы будем использовать такую характеристику прогнозной задачи, как обширность. Выделим три ее уровня, основываясь на усредненной скорости получения информации об исследуемом объекте (процессе) большинством научного сообщества.
Задача имеет i-й уровень обширности, если информация, которая поможет ее решить, может быть получена из:
автоматизированных источников (i = 1; I уровень);
печатных источников или от исследователей (i = 2; II уровень);
непосредственных экспериментов (i = 3; III уровень).
Отдельно стоит отметить, что, скорее всего, задач V и IV уровней, сложности и I уровня обширности не существует.
Алгоритм определения уровня сложности прогнозной оценочной задачи
Вслед за Г.С. Альтшуллером (11) мы выделяем пять уровней сложности задачи, но трактовать их будем по-другому. Для этого более детально рассмотрим схематичное изображение алгоритма определения уровня сложности прогнозной оценочной задачи, приведенное на рис. 1.
Рис. 1. Блок-схема процедуры определения уровня сложности прогнозной задачи оценивания.
К задачам I уровня сложности относятся те, способ решения которых уже известен. Это своего рода крайний случай.
Для задач II уровня сложности:
Способ решения неизвестен, но варианты решений можно вычленить. При этом под вариантом решения прогнозной оценочной задачи мы понимаем конкретный вариант развития событий в будущем.
Задачу можно решить, исходя из текущих представлений о рассматриваемом объекте большинства представителей научного сообщества, базирующихся на уже имеющихся парадигмальных основаниях.
Полный перебор вариантов решения задачи возможен.
Мы полагаем, что в этом случае целесообразна систематизация направлений поиска решения исследователем. Этой систематизацией в ходе решения задачи преодолевается инерция мышления эксперта.