Смекни!
smekni.com

Процедура установления соответствия между задачей и методом (стр. 3 из 3)

Соответствие древовидных разбиений совокупностей экспертных методов и прогнозных оценочных задач (применение различных групп экспертных методов для решения задач различных уровней сложности)

Итак, мы показали, что разбиение прогнозных оценочных задач на уровни сложности существует и является группировкой. Более того, можно определить уровень сложности задачи до того, как она решена, т.е. априорно. Теперь покажем, что оно может быть эффективно использовано для выбора метода, что между разбиением задач на уровни сложности и неким разбиением методов на группы существует глубокая, органичная связь. Рассмотрим древовидное представление совокупности экспертных методов.

Рис. 3. Древовидное разбиение совокупности экспертных методов.

Сопоставляя рис. 2 и 3, видим, что древовидные разбиения совокупностей прогнозных экспертных задач (рис. 2) и экспертных методов (рис. 3) сходны друг с другом (как ориентированные графы).

Исходя из этого, полагаем, что задачи II уровня сложности соотносятся с группой методов, в основе которых лежит систематизация перебора вариантов решения задачи, а задачи III уровня сложности соотносятся с группой методов хаотизации перебора.

Итеративные процедуры позволяют решать задачи, не выходя за пределы текущих парадигмальных оснований. И между собой объединяет их то, что они, кроме прочего, преодолевают инерцию мышления экспертов путем их взаимодействия. Способ преодоления инерции мышления в данном случае — систематизация или хаотизация — не конкретизируется. Отсюда делаем вывод, что эта группа методов соотносится как со II, так и с III уровнем сложности.

Покажем, что такая связь есть и для решения задач уровня сложности выше III. Сначала рассмотрим трактовку уровней рефлексии по Д.А. Новикову и А.Г. Чхартишвили (15). «Рефлексия начальных уровней также может интерпретироваться следующим образом. Предположим, что есть субъект, который воспринимает окружающий его мир. Можно выделить несколько уровней восприятия (уровней рефлексии). На нулевом (бытийном, нерефлексивном) уровне у субъекта существуют определенные представления об окружающем мире (возникающие как его отражение), однако он не осознает, что представления могут быть неполными, искаженными и т.д… Первый уровень восприятия, на котором уже присутствует рефлексия, назовем научным, т.к. именно на нем впервые возникают осознанные различия между субъективным и объективным описанием действительности (характерным примером первого ранга рефлексии является научная рефлексия по Г.П. Щедровицкому (16). Второй уровень рефлексии назовем философским, так как он характеризуется появлением представлений о многообразии способов отражения и осознанием возможности выбора способа познания». Итак, субъект со вторым уровнем рефлексии, кроме прочего, обладает философским видением мира и, стало быть, способен к философскому анализу. Полезен ли для нас философский анализ? Наверное, да, ведь Кун в качестве инструмента для перехода к новой парадигме (для решения задачи высокого уровня сложности) предлагал использовать именно «философский анализ» (17): «…в периоды осознания кризисов… ученые обращаются к философскому анализу как средству для раскрытия загадок в их области». И далее: «...мы отмечали, что полного ряда правил, которого добивается философский анализ, не существует. Но это не означает, что поиски предположений (даже не существующих) не могут быть эффективным способом для ослабления власти старых традиций над разумом и выдвижения основы для новой традиции».

Таким образом, это дает возможность предположить, что философский анализ (упомянутый Куном) может осуществляться субъектом со вторым уровнем рефлексии, и этот уровень рефлексии, в числе прочего, дает возможность двигаться к осознанию парадигмальных оснований. Зададимся вопросом: существует ли метод получения новой информации от эксперта, который включал бы в себя элементы рефлексии? Да, существует. При внимательном рассмотрении списка контрольных вопросов Тима Эйлоарта (18) видим, что нижеприведенные вопросы базируются на рефлексивной схеме:

Вопрос № 18. Уточнить, чья это проблема. Почему его?

Вопрос № 20. Кто еще решал эту проблему и чего добился?

Стоит отметить, что нам важен рефлексивный подход не сам по себе, а лишь как средство для движения к осознанию ограничений существующими парадигмальными основаниями, поэтому уместен последний вопрос из списка Эйлоарта и примечательно, что он замыкающий.

Вопрос № 21. Определить общепринятые граничные условия и причины их установления.

Это позволяет предположить, что подобную реализацию метода контрольных вопросов можно использовать для решения задач IV уровня сложности.

Рассмотрим теперь, как же можно решать задачи V уровня сложности. Предполагаем, что список контрольных вопросов может быть дополнен некими подсказками, или эвристиками, которые позволят исследователю отделить создающиеся основы перечней объясняющих правил от основ целостной теории. Эти эвристики мы не знаем, но предполагаем, что они существуют, так как существуют исследователи, которые решили несколько крупных задач V уровня сложности, создав основы целостных новых теорий. Так, например, Альберт Эйнштейн сумел разработать и специальную, и общую теорию относительности, что позволило, например, устранить расхождения в экспериментальных данных и теоретических расчетах относительно оценки величины движения перигелия Меркурия. Т.е. имеются основания полагать, что можно найти методы для решения задач V уровня сложности.

В соответствии с этим составим таблицу соответствия между уровнями сложности и группами методов по Ю.В. Сидельникову.

Табл. 2. Соответствие между уровнями сложности задачи и группами методов.

Из таблицы видно, что на II и III уровни сложности задачи «ложится» большая часть методов получения новой информации. Поэтому для повышения избирательности обоснованного отбора метода полезно использовать такую характеристику прогнозной задачи, как обширность задачи, оценка которой имеет три различных уровня.

Таким образом, мы получили, что произвольную оценочную задачу можно отнести к одному из 15 классов (исходя из пяти уровней сложности и трех уровней обширности).

Полезность введения понятия «обширность» может быть проиллюстрирована следующим примером. Для решения некой задачи II уровня сложности можно использовать и, скажем, морфологический анализ, и процедуру дельфи. Какой из этих методов (инструментов) целесообразно выбрать в данном конкретном случае зависит, кроме прочего, от обширности задачи. Если это некая задача I уровня обширности, то, скорее всего, морфологический анализ будет предпочтительней, т.к. он переберет все варианты и будет не намного более трудоемким (если будет), чем процедура дельфи. Если же задача III уровня обширности, то морфологический анализ в типичном случае будет существенно более трудоемким, чем дельфи, что перекроет преимущество в точности (если оно будет). Поэтому более предпочтительной окажется процедура дельфи. При одинаковом уровне сложности уровень обширности позволяет сделать обоснованный выбор метода более селективным.

Полученные характеристики задачи (сложность и обширность) используются в многокритериальной модели ситуации принятия решения наряду с другими характеристиками задачи, метода и кортежа «задача — метод» для отбора нескольких наиболее эффективных методов решения рассматриваемой прогнозной оценочной задачи.

Заключение

В данной работе впервые рассмотрена процедура установления соответствия между прогнозной задачей оценивания и экспертным методом, позволяющая проводить обоснованный выбор группы методов. Для реализации процедуры разработан алгоритм определения уровня сложности прогнозной задачи оценивания, причем градации этих уровней одинаково интерпретируются различными прогнозистами (что позволит в дальнейшем автоматизировать процедуру отбора нескольких наиболее эффективных методов).

Список литературы

Сидельников Ю.В. Системный анализ технологии экспертного прогнозирования. М.: Изд-воМАИПРИНТ«МАИ», 2007.

Brown B., Cochran S. and Dalkey N. The Delphi Method II: structure of experiments. Memorandum RM — 5957 — PR, The Rand Corporation, Santa Monica, California, 1969, June.

Ford D.A. Shang Inquiry as an alternative to Delphi: some experimental findings. Technol. Forecast. and Soc. Change, 1975, 7 (2), p. 139–164.

Lutz W., Saariluoma P., Sanderson W. C., Scherbov S. New Developments in the Methodology of Expertand Argument-Based Probabilistic Population Forecasting / Interim Report, International Institute for Applied Systems Analysis. Laxenburg, Austria, 2000.

Селиванов С.Н., Гущин И.В. К вопросу о выборе метода прогнозирования организационной системы на основе анализа ошибок прогноза // Сб. трудов Всесоюзного научнотехнического семинара «Опыт разработки прогнозов развития отраслей». Ереван, май 1980, с. 235–246.

Минаев Э.С., Песелева Р.И. Рекомендации по выбору и комплексированию методов прогнозирования. Минск, 1989.

Подиновский В.В. Введение в теорию важности критериев в многокритериальных задачах принятия решений. М.: Физматлит, 2007.

Сидельников Ю.В., Салтыков С.А. Модель социально-экономической ситуации принятия решений при выборе экспертного метода // Сб. трудов XXXV Международной конференции «Информационные технологии в науке, социологии, экономике и бизнесе». Ялта, Гурзуф, май 2008, с. 364–365.

Салтыков С.А., Сидельников Ю.В. Об экспериментальном исследовании по проверке гипотезы о связи сложности объекта прогнозирования и выбора наиболее точного вида экспертной оценки // Сб. трудов «Второй научной школы-семинара по проблемам управления большими системами». Воронеж, 2007, с. 128–130. Необходимо обратить внимание, что в статье впервые рассматриваются не характеристики объекта, как это обычно бывает, а характеристики задачи об объекте исследования и кортежа «задача — метод».

Салтыков С.А. Обширность задачи как один из ключевых факторов выбора наиболее эффективного экспертного метода // Сб. трудов XXXV Международной конференции «Информационные технологии в науке, социологии, экономике и бизнесе». Ялта, Гурзуф, май 2008, с. 360–361.

Альтшуллер Г.С. Найти идею. Новосибирск: Наука, 1986, с. 44–49.

Кун Т. Структура научных революций. М.: ООО «Издательство АСТ», 2003, с. 13–269.

Альтшуллер Г.С. Найти идею. Новосибирск: Наука, 1986, с. 51–52.

Кун Т. Структура научных революций. М.: ООО «Издательство АСТ», 2003, с. 138.

Новиков Д.А., Чхартишвили А.Г. Рефлексивные игры. М.: СИНТЕГ, 2003, с. 61–62.

Щедровицкий Г.П. Принципы и общая схема методологической организации системно-структурных исследований и разработок // Системные исследования. М., 1981, с. 193–227.

Кун Т. Структура научных революций. М.: ООО «Издательство АСТ», 2003, с. 125.

Эйлоарт Т. Приемы настройки творческого инженерного коллектива. // Изобретатель и рационализатор. 1970. № 5.