4. Аддитивность. Количество информации нескольких символов равно сумме количеств информаций каждого.
I(b1, b2, b3) = I(b1) + I(b2) + I(b3)
Энтропия – среднее количество информации на символ сообщения (средневзвешенное).
Свойства энтропии
1. Энтропия неотрицательна:
Н(А) ≥ 0
2. Энтропия равна нулю тогда и только тогда, когда вероятность символа равна 1:
Н(ai) = 0 ⇔р(ai) =1
3. Энтропия ограничена
H (B) =< log n[бит/символ]
где n – количество символов в сообщении.
4. Максимальная энтропия равна
Hmax(B) = log n[бит/символ]
| |
|
Существует два вида условной энтропии, которые определяют действия помех на дискретном канале – это частная условная энтропия (ЧУЭ) и общая условная энтропия (ОУЭ).
Частная условная энтропия приемника (ЧУЭП) сообщений определяет потери информации каждого принятого сигнала
H(A/ bj) = −
Общая условная энтропия приемника (ОУЭП) определяет средние потери информации на символ
где
Если длительность передачи сигналов различна, то вычисляется среднее время передачи одного сигнала.
5.2 Производительность источника
5.3 Скорость передачи
Скорость передачи источника:
Скорость передачи приёмника:
5.4 Емкость канала
Емкость канала (пропускная способность канала) - это максимальное
количество бит, передаваемое в единицу времени – секунду.
Пропускная способность – максимальная скорость передачи.
C=maxR
Емкость канала источника:
Емкость канала приёмника:
Чем больше коэффициент эффективности дискретного канала стремится к единице, тем эффективнее канал и тем меньше информационные потери на нём.
1) Теорема о критической скорости:
Теорема определяет критическую скорость передачи
2) Теорема о кодировании:
Если H’(A) – производительность источника - меньше емкости канала (
1. Исходные данные
Дана матрица условных вероятностей, которые отражают действие помех дискретного канала связи.
Сумма вероятностей каждой строки равна 1,00.
Время передачи символа τ = 0,0002 сек. Передано 250 символов.
Безусловные вероятности появления символов на выходе:
p(a1)=0.25, p(a2)=0.35, p(a3)=0.15, p(a4)=0.25
2. Расчёты
1) Количество информации I(ai )каждого символа a1, a2, a3 дискретного сообщения :
2)Среднее количество информации, переданное одним символом определяет энтропия источника сообщений Н(А):
H(A) = -(0,25*(-2) + 0,35*(-1,51) + 0,15*(-2,73) + 0,25*(-2) = -(-0,5 - 0,53 – 0,41 – 0,5) = 1,94 [бит/символ]
3)Максимальная энтропия источника сообщений Hmax(A)
Hmax(A)= log N=log 4=2 [бит/символ]
где N-количество символов в алфавите сообщения.
4)Информационные потери при передаче каждого символа ai определяет частная условная энтропия H(B/ai ):
H(B/a1 )= -(0,9*(-0,15) + 0,05*(-4,32) + 0,03*(-5,05)+0,02*(-5,64) =
-(-0,1368 – 0,2161 – 0,1518 – 0,1129) = 0,6175 [бит/символ]
H(B/a2 )= -(0,1*(-3,32) + 0,84*(-0,25) + 0,06*(-4,05)+0) =
-(-0,3321 – 0,2112 – 0,2435 – 0) = 0,787 [бит/символ]
H(B/a3 )= -(0 + 0,01*(-6,64) + 0,98*(-0,03)+0,01*(-6,64)) =
-(-0 – 0,0664 – 0,0286 – 0,0664) = 0,1614 [бит/символ]
H(B/a4 )= -(0 + 0 + 0,01*(-6,64)+0,99*(-0,0145)) =
-(-0– 0 – 0,0664 – 0,0144) = 0,081[бит/символ]
5)Средние потери информации при передаче одного символа определяет общая условная энтропия источника Н(B/А):
H(B|A) = 0,25*0,6175 + 0,35*0,787 + 0,15*0,1614 + 0,25*0,081 = 0,1543 + 0,2755 + 0,0242 + 0,02 = 0,4743 [бит/символ]
6)Общие потери информации в канале святи при передаче сообщения, состоящего из 250 символов I
I = k H (B / A) = 2500,737476 = 184 [бит]
где k – количество символов в переданном сообщении.
7) Среднее количество информации, принятое приемником на один символ, определяется энтропией приемника Н(B)
p(b1) = 0,9*0,25 + 0,35*0,1 + 0 + 0 = 0,225 + 0,035 = 0,26
p(b2) = 0,05*0,25 + 0,84*0,35 + 0,01*0,15 +0 = 0,0125+0,294+0,0015 =0,35
p(b3) = 0,03*0,25 + 0,06*0,35 + 0,98*0,15+0,01*0,25 = 0,0075+0,021+ 0,147+0,0025 = 0,178
p(b4) = 0,02*0,25 + 0 + 0,01*0,15 + 0,99*0,25 = 0,005 + 0+0,0015+ 0,2475=0,254
H(B) = -(0,26*(-1,94) + 0,35*(-1,7) + 0,178*(-2,49) + 0,254*(-1,97)) = -
-(-0,5 – 0,5234 – 0,4432 – 0,5) = 1,974 [бит/символ]
8) Максимальная энтропия приемника, Hmax(B)
Hmax(B)= logN = log 4 =2 [бит/символ]
9)Среднее количество принятой приемником информации, на один символ с учетом потерь информации, I (A, B)
I (A, B) = H (B) – H (B / A) =
10) Скорость модуляции дискретного канала, n
n=
11) Продуктивность дискретного канала сообщений, H’(A)
H’(A)=
H’(A) =
12) Скорость передачи информации, R
R =
R= (1,974 - 0,4743)/0,002 = 749,8676 [бод]
13) Пропускная способность (емкость) дискретного канала связи определяется максимальной скоростью передачи: C=max R
С=
C=