Смекни!
smekni.com

Решение математических задач с использованием программного пакета MathCad (стр. 2 из 2)

Рисунок 1 – Совместное графическое решение

Из всех методов наиболее точным оказался метод Рунге-Кутты, его максимальная относительная погрешность 0,024%, относительная погрешность приближенного метода составила 27,7%. Метод Эйлера с шагом 0,1 имеет наибольшую погрешность 83,2%, однако при уменьшении шага в до 0,01 его погрешность составляет всего 5,8%. Это подтверждает то, что погрешность метода Эйлера сильно зависит от принятого шага. Проанализировав графическое решение делаем вывод о том, что методы Эйлера и Рунге-Кутты повторяют форму кривой точного решения, а график приближенного решения с увеличением аргумента всё сильнее отклоняется от искомого графика – свидетельство того, что погрешность решения с помощью рядов зависит от количества членов ряда. Характер кривой также говорит о том, что точность приближенного решения с помощью рядов удовлетворительна только вблизи некоторой точки.

3. Система дифференциальных уравнений

Решить систему дифференциальных уравнений, получить точное решение вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента), численное решение методом Эйлера, Рунге-Кутты. Представить графическое совместное решение, рассчитать локальную, относительную и абсолютную погрешность решения.

Дано:

dx/dt=3x + y

dy/dt=5/2x – y + 2

x(0)=0

y(0)=1

3.1 Точное решение операторным методом

Пусть X(s) изображение, для оригинала x(t), Y(s) изображение для оригинала y(t). Перейдем от оригинала к изображению:

Найдем значения изображений:

Найдем значения функции и построим её график:


3.2 Приближенное решение с помощью рядов

Преобразуем систему таким образом что, получим дифференциальное уравнение второго порядка, зависящее только от x:

x''-2x'-11/2x-2=0

Алгоритм решения такой же, как и при решении дифференциального уравнения с правой частью специального вида, но без необходимости раскладывать правую часть.


Выводы

Наименьшую погрешность имеет метод Рунге-Кутты четвертого порядка – для функции x(t) относительная погрешность на десятом шаге составляет 0,036%, для функции y(t) 0,0297%. Наибольшая погрешность у метода Эйлера с шагом 0,1 – для функции x(t) 70,8%, для функции y(t) 51,4%. При изменении шага до 0,01 погрешность существенно уменьшается до 6,6% и 5,3% соответственно. Вывод о влиянии шага на погрешность в методе Эйлера совпадает с выводами решения дифференциального уравнения – большую роль в точности этого метода играет шаг. Можно еще раз подтвердить вывод о том, что точность приближенного метода решения сильно зависит от того, на сколько членов будет разложена дифференциальная функция.