В постановке задачи (2.1.5) - (2.1.9) выделим блок функции (2.1.6), (2.1.7), зависящий только от переменной
зависящий от переменных
В этом случае можно выделить блок функционала цели вида (2.1.5), (2.1.10).
Отсюда следует.
Определение 2.1. Блочно-симметричной задачей дискретного программирования назовем задачу вида (2.1.5) - (2.1.9), где переменные
Рассмотрим выражение (2.1.4). из него следует что переменные
На основе общей постановки определим основные свойства сформулированного класса задач, отличающие его от традиционных постановок задач дискретного программирования.
Свойство 1. В блочно-симметричной задаче имеется два типа переменных
В общем случае переменных может быть и больше в зависимости от постановок задач.
Свойство 2. Блочность задачи заключается в выделении в постановке отдельных блоков функций вида (2.1.5), (2.1.10); (2.1.6), (2.1.7) и (2.1.8), (2.1.9), которые соответственно зависят от переменных
Как видно из указанных соотношении каждый из блоков имеет свою целевую функцию и координируется общим функционалом вида (2.1.5).
Свойство 3. Блочно-симметричную задачу в большинстве случаев можно представить в матричной форме вида (2.1.11).
Матричная форма постановки блочно-симметричных задач позволяет использовать аппарат теории матриц и разрабатывать эффективные алгоритмы решения задач этого класса.
Свойство 4. Симметричность задачи заключается в возможности вычисления (2.1.11) как слева направо, так и обратном направлении.
Указанные свойства и особенности блочно-симметричных задач ДП позволяют синтезировать алгоритмы, обеспечивающих решение практических задач большой размерности.
В ряде постановок задач функционал (2.1.1) можно представить в виде вектора функций
Анализ постановки, свойств и особенности блочно-симметричных задач позволил разработать и предложить подход и схему метода решения общей задачи на основе следующего утверждения.
Утверждение. Распределение элементов множества
Введем понятие базиса решения задач. Под базисом понимается заранее заданный состав элементов подмножеств
В матрице
Для решения блочно-симметричной задачи дискретного программирования при условии, когда
1. В булевой матрице
2. Определим матрицу
3. В соответствии с полученными оценками осуществим распределение элементов множества
4. Определим матрицу
5. В соответствии с полученными оценками матрицы
6. Следует отметить, что поиск решения задачи может осуществляться как в прямом направлении по схеме