В системном моделировании, в частности, в теорий выбора и принятия решений наиболее распространенными способами нахождения МА являются следующие.
1. Построение (определение) детерминированного формального механизма, позволяющего генерировать альтернативы с помощью параметров алгоритма или с помощью параметров формулы . [100-103]
2. Представление МА в неявном виде с помощью системы соотношений (ограничений ). [104-105]
3. Перечисление всех элементов МА, т.е. представление каждого элемента МА в явном виде. [108, 109]
В работе [121], именно в контексте алгоритмической проблемы, относящейся к последнему из указанных выше трех способов, осуществляется обоснование оценок мощности МА для таких многокритериальных дискретных задач, как задачи о совершенных паросочетаниях, о коммивояжере, о цепях между парой вершин и другие при этом нахождение МА понимается как перечисления с предъявлением всех его элементов [110, 100]. При определенных условиях нижние оценки мощности ПМ и ПМА перечисленных задач оказывается экспоненциальным. Последнее означает, что для рассматриваемых задач проблема нахождения МА является труднорешаемой [110,111]. Или (в терминологии [112,113]) она имеет экспоненциальную вычислительную сложность.
Следуя, [112], рассматриваемую
Анализируя приложения той или другой задачи, нетрудно убедиться, что состав критериев ВЦФ обычно меняется. Например, в системах автоматизированного проектирования электронной техники [114-118] возникает многокритериальные задачи на графах, в которых остовное дерево (связывающая сеть) может оценивается такими критериями, как вес, «узкое место» (минимаксный критерий), степень, диаметр и т.д. [119,120]. При этом по мере необходимости эти критерии входят в состав ВЦФ в разнообразных комбинациях, порождая различные варианты задач об остовных деревьях. Общим у этих задач является лишь множество допустимых решений
Используя понятие «задача» как переменное, употребляем для ее обозначения символ
Перечислим рассматриваемые здесь дискретные многокритериальные задачи:
1.
2.
3.
4.
5.
6.
Таким образом, решение многокритериальных задач ДП весьма сложно в вычислительном отношении, о чем свидетельствует результаты исследований.
По мере развития моделей и методов дискретного программирования, постановки новых задач и других приложений появляется необходимость разработки новых подходов моделей и методов решения задач.
1.3 Постановка задачи исследования
Проектирование систем обработки данных многоэтапный и длительный процесс в зависимости от сложности проектируемой информационной системы.
В настоящее время в процессе проектирования СОД широко используются системы управления базами данных (СУБД), система автоматизации процесса проектирования программного и информационного обеспечения и множество других вспомогательных инструментальных средств. Вместе с тем процесс проектирования систем обработки данных остается творческим процессом, зависящим от опыта знаний и способностей разработчиков. При этом наиболее сложным и длительным является разработка прикладного программного и информационного обеспечения систем обработки данных.
Как показал анализ известных исследований наиболее эффективным подходом является разработка формализованных моделей и методов проектирования модульных систем, обеспечивающее качественную и ускоренную разработку таких систем. Принцип модульности предполагает декомпозицию сложных систем на отдельные части (модули) на основе заданных критериев эффективности.
В данной работе необходимо разработать формализованные модели, методы, алгоритмы и программные средства проектирования модульных систем обработки данных на основе новых подходов.
Одним из этапов проектирования систем обработки данных является определение переченя и последовательности решения функциональных (прикладных) задач обработки данных и состава исходных документов, в которых содержится необходимая входная информация (информационные элементы) и установленные взаимосвязи между ними.
При большом числе прикладных задач и требуемых для их решения исходных документов, появляется необходимость декомпозиции этой структуры с целью разделения ее на слабосвязанные фрагменты для облегчения процесса проектирования.
В последующем каждый фрагмент представляется в виде множества процедур обработки данных и взаимосвязанным с ними информационных элементов. На этом этапе необходимо сформулировать структуру модульной системы обработки данных, представляющую собой совокупность процедур обработки данных, объединенных в модули и совокупности информационных элементов, объединены в массивы (таблицы) базы данных и установить между ними оптимальные взаимосвязи.
Необходимо обосновать и выбрать критерии оптимизации в процессе формализованного проектирования систем обработки данных.
Большие размерности задач, решаемые на каждом этапе проектирования обусловливают необходимость исследования и разработки новых подходов, моделей, методов и алгоритмов проектирования систем обработки данных.
Одним из новых направлении постановки и решения задач эффективного проектирования СОД являются блочно-симметричные модели и методы, которые позволяют решать задачи большой размерности. Разработка и развитие этих методов является весьма актуальной проблемой.
В процессе проектирования СОД возникает необходимость учета вектора критериев оптимизации, которые часто бывают противоречивым.
В этом случае решается многокритериальная задача дискретного программирования, алгоритмы решения которых являются сложными и требуют новых подходов.
Анализ существующих методов проектирования модульных систем обработки данных (МСОД), алгоритмов реализации этих моделей и проведенные исследования показали необходимость разработки новых подходов и классов моделей и методов проектирования систем обработки данных.