Смекни!
smekni.com

Технология извлечения знаний из нейронных сетей: апробация, проектирование ПО, использование в психолингвистике (стр. 15 из 19)

При вербализации некоторые синдромы достаточно осмысленны и естественны, другие, напротив, непонятны. Из набора логически прозрачных нейросетей можно отсеять несколько наиболее осмысленных синдромов, объединить их в новую нейронную сеть, при этом введя, если необходимо, некоторые дополнительные нейроны или синапсы для связывания этих фрагментов между собой. Полученная нейросеть после адаптации и упрощения может быть более понятна, чем любой из ее предков. Таким образом, неединственность полуэмпирических теорий может стать ценным инструментом в руках исследователей-когнитологов.

В отдельные программы-нейроимитаторы встроены специальные средства визуального конструирования нейросетей. Однако ручное конструирование сети с целью заложения в нее эмпирических экспертных знаний достаточно сложно и часто практически неприменимо.

Вместо конструирования нейросети "с нуля" будем конструировать ее из фрагментов других сетей. Для реализации такой возможности программа-нейроимитатор должна включать в себя достаточно развитый визуальный редактор нейронных сетей, позволяющий вырезать из сетей отдельные блоки, объединять их в новую сеть и дополнять сеть новыми элементами. Это одна из возможностей нейроимитатора NeuroPro(идея предложена лично автором работы).

Если в результате дообучения и упрощения новой сети понимаемость использованных при конструировании фрагментов не потеряна, то новый набор правил потенциально более понятен пользователю, чем каждый из начальных.

Естественно, что возможны различные стратегии обучения и контрастирования сконструированной сети: можно запрещать обучение (изменение параметров) и контрастирование фрагментов, из которых составлена сеть, и разрешать обучение и контрастирование только добавленных элементов. Можно разрешать только дообучать фрагменты, можно разрешать и их контрастирование. Все зависит от предпочтений пользователя программы-нейроимитатора.


Глава 5. Нейросетевой анализ структуры индивидуального пространства смыслов

5.1. Семантический дифференциал

Слова осмысляются человеком не через "толковый словарь", а через ощущения, переживания. За каждым словом у человека стоит несколько этих базовых переживаний: собака - это что-то маленькое, добродушненькое, пушистое, с мокрым язычком, …, но это и здоровенный, грозно рычащий зверь со злобными глазами, огромными клыками, … . Большинство слов кодирует некоторые группы переживаний, ощущений, и определить смысл слова, то есть эти самые переживания – довольно сложная задача.

Дж. Осгуд с соавторами в работе под названием “Измерение значений” ввели для решения этой задачи метод “семантического дифференциала” (обзор литературы дан в работе [86]). Они предложили искать координаты слова в пространстве свойств следующим образом. Был собран некоторый набор слов (например, "мама", "папа" и т.д.) и набор признаков к этим словам (таких, как близкий - далекий, хороший - плохой, и т.д.), и опрашиваемые люди оценивали слова по этим шкалам. Затем отыскивался минимальный набор координат смысла, по которому можно восстановить все остальные. Было выделено 3 базовых координаты смысла, по которым все остальные можно предсказать достаточно точно: сильный - слабый, активный - пассивный и хороший - плохой. С другой стороны, выявились огромные различия между культурами, например, у японцев и американцев очень многие вещи имеют существенно разные смысловые характеристики.

Существуют различные способы выделения основных признаков (базовых координат), например, метод главных компонент, факторный анализ и др. В данной работе используются нейросетевые методы. Разработка технологии сокращения описания и извлечения знаний из данных с помощью обучаемых и разреживаемых нейронных сетей началась в 90-е годы XX века и к настоящему времени созданы библиотеки нейросетевых программ даже для PC, позволяющие строить полуэмпирические теории в различных областях.

В данной работе с помощью нейроимитатора исследовались индивидуальные смысловые пространства. Был создан вопросник, в котором определяются координаты (от –10 до 10) 40 слов по 27 параметрам и были проведены эксперименты на нескольких людях.

Слова:


1. Папа

2. Мама

3. Болезнь

4. Детский сад

5. Школа

6. Собака

7. Кот

8. Воробей

9. Ворона

10.Апельсин

11.Яблоко

12.Дед Мороз

13.Дерево

14.Змея

15.Еда

16.Тортик

17.Горшок

18.Брат

19.Сестра

20.Работа

21.Деньги

22.Квартира

23.Муж (жена)

24.Дедушка

25.Бабушка

26.Музыка

27.Президент

28.Парламент

29.Политика

30.Наука

31.Политик

32.Ученый

33.Теорема

34.Выборы

35.Коммунизм

36.Доказательство

37.Россия

38.Америка

39.Китай

40.Израиль

41.Религия

42.Бог


1. Плотный – рыхлый

2. Молодой – старый

3. Светлый – темный

4. Разумный – неразумный

5. Холодный – горячий

6. Быстрый – медленный

7. Близкий – далекий

8. Пугливый – бесстрашный

9. Страшный – не страшный

10.Спокойный – беспокойный

11.Веселый – грустный

12.Удобный – неудобный

13.Красивый – некрасивый

14.Опасный – безопасный

15.Приятный – неприятный

16.Ручной – дикий

17.Утонченный – грубый

18.Умный – глупый

19.Шумный – тихий

20.Ласковый – грубый

21.Большой – маленький

22.Дружественный – враждебный

23.Мягкий – твердый

24.Добрый – злой

25.Активный – пассивный

26.Хороший – плохой

27.Сильный – слабый


В экспериментах отыскивался минимальный набор координат смысла, по которому можно восстановить все остальные с точностью до тенденции (т.е. с точностью до 3 баллов). Это делалось при помощи нейросетевого имитатора NeuroPro. Следует отметить, что предсказание с точностью до 3 баллов фактически соответствует переходу от 21-балльных шкал (от –10 до 10) к традиционным 7-балльным (от –3 до 3).

С помощью NeuroPro возможно получение показателей значимости входных сигналов для принятия нейросетью решения, показателей чувствительности выходного сигнала сети к изменению входных сигналов, показателей значимости и чувствительности по отдельным примерам выборки.

За начальную архитектуру была взята слоистая нейронная сеть, состоящая из трех слоев по 10 нейронов в каждом. Далее проводились последовательно следующие операции.

1) Обучение нейронной сети с максимальной допустимой ошибкой обучения 0.49 балла (такая ошибка приводит к тому, что после округления ошибка обучения фактически равна 0). Как показал опыт, такой ошибки обучения чаще всего достаточно для предсказаний с требуемой точностью, то есть для ошибки обобщения, меньшей 3 баллов.

2) Из входных сигналов выбирался наименее значимый и исключался, после чего проводилось повторное обучение нейросети с новыми входными сигналами и прежней ошибкой обучения.

Эта процедура проводилась до тех пор, пока нейросеть могла обучиться. В результате этих операций были получены минимальные определяющие наборы признаков (т.е. наборы входных сигналов, оставшиеся после сокращения их числа).

Для разных людей получены очень разные результаты (первые результаты представлены в [87]), совсем непохожие на результаты Осгуда. Вот типичные примеры:

Определяющий набор признаков 1-го человека (размерность 7):

Умный – глупый, шумный – тихий, разумный – неразумный, плотный – рыхлый, дружественный – враждебный, страшный – не страшный, опасный – безопасный.

2-го человека: сильный – слабый, приятный – неприятный, опасный – безопасный, страшный – не страшный, дружественный – враждебный, удобный – неудобный (размерность 6).

3-го человека: приятный – неприятный, опасный – безопасный (размерность 2). Представляет интерес, что Осгудовские признаки почти не представлены в большинстве наборов. В связи с этим было решено проверить, можно ли предсказать значения произвольно выбранных признаков при помощи набора Осгуда (ошибка обучения в экспериментах допускалась ±0.49 балла). Практически во всех случаях нейронные сети обучались с приемлемой ошибкой обучения, но ошибка обобщения в экспериментах со скользящим контролем (нейронные сети обучались по всем словам, кроме 2-х – 3-х, а потом тестировались на этих словах) часто была недопустимо велика (5-9 баллов). После этого проводились следующие эксперименты: нейронная сеть обучалась предсказывать значения параметров по уже определенному минимальному набору признаков на одной половине слов, далее она тестировалась на словах из другой половины.

При этом для большинства слов нейронные сети давали удовлетворительные прогнозы по всем параметрам (с точностью до 3 баллов), но почти во всех случаях обнаруживались одно - два слова, для которых сразу по нескольким признакам ошибка нейронных сетей была очень велика.

5.2. MAN-многообразия

Итак, для каждого человека обнаруживается многообразие сравнительно малой размерности, в небольшой окрестности которого лежат почти все слова.

При осмыслении этого возникает гипотеза, связанная с тем, что отношение человека к большинству вещей, событий и т.д. не индивидуально, а сформировано культурой, в которой этот человек рос, его окружением и поэтому зависит от сравнительно небольшого числа признаков. В связи с этим и могли появиться многообразия малой размерности, в небольшой окрестности которых лежат почти все слова. Назовем их ман–многообразиями (от немецкого неопределенного местоимения man (некто)). Вероятно, для каждой определенной культуры имеется небольшое количество различных ман-многообразий, специфичных для нее. В ходе воспитания человек присваивает одно из типичных ман–многообразий. Например, определяющий набор признаков 3-го человека представляется основным набором признаков и для животных: опасность и приятность имеют прямой химический аналог и соответствуют уровню адреналина, эндорфинов и энкефалинов.