После перемежения начинается стадия модуляции. Исходя из выбранной схемы модуляции (BPSK / QPSK / 16-QAM / 64-QAM), блок представляется в виде последовательности групп бит, соответствующих модуляционным символам (по 1 / 2 / 4 / 6 бит). Каждой группе ставится в соответствие значения
Векторные диаграммы Грея (представление модуляционных символов) для BPSK, QPSK, 16-QAM, 64-QAM.
Рис. 3.12.
Для усреднения амплитуд квадратурных символов используются нормализованные значения
Пилотные несущие модулируются посредством BPSK. Значения сигналов на этих несущих определяются на основании двоичной ЛРП
После определения модуляционных символов посредством ОБПФ вычисляется сам радиосигнал и передается в передатчик. При приеме все процедуры производят в обратном порядке.
В режиме ODFM на физическом уровне для сетей с архитектурой «точка-многоточка» кадровая структура передачи принципиально мало чем отличается от режима SC. Так же как и в высокочастотной области, информационный обмен происходит посредством последовательности кадров (фреймов). Каждый фрейм (рис. 3.14) делится на два субкадра – нисходящий (DL – от БС к АС) и восходящий (UL – от АС
Генерация модулирующей последовательности для пилотных несущих
Рис. 3.13
к БС). Разделение на восходящий и нисходящий каналы – как временное (TDD), так и частотное (FDD). В последнем случае DL и UL транслируются одновременно, в разных частотных диапазонах.
Нисходящий субкадр включает преамбулу, управляющий заголовок кадра (FCH[35]) и последовательность пакетов данных. Преамбула в нисходящем канале – посылка из двух OFDM-символов (длинная преамбула), предназначенная для синхронизации.
Структура OFDM-кадров при временном дуплексировании
Рис. 3.14
Первый OFDM-символ использует несущие с индексами, кратными 4, второй – только честные несущие (модуляция QPSK).
За преамбулой следует управляющий заголовок кадра – один OFDM-символ с модуляцией BPSK и стандартной схемой кодирования (скорость кодирования – 1/2). Он содержит так называемый префикс кадра нисходящего канала (DLFP[36]), который описывает профиль и дину первого (или нескольких начальных) пакета в DL-субкадре.
В первый пакет входят широковещательные сообщения (предназначенные всем АС) – карты расположения пакетов DL-MAP, UL-MAP, дескрипторы нисходящего/восходящего каналов DCU/UCD, другая служебная информация. Каждый пакет обладает своим профилем (схема кодирования, модуляция и т.д.) и передается посредством целого числа OFDM-символов. Точки начала и профили всех пакетов, помимо первого, содержатся в DL-MAP.
Нисходящий субкадр содержит интервал конкурентного доступа, включающий периоды для начальной инициализации АС (вхождение в сеть) и для запроса полосы передачи. Далее следуют временные интервалы, назначенные БС определенным АС для передачи. Распределение этих интервалов (точки начала) содержится в сообщении UL-MAP. АС в своем временном интервале начинает трансляцию с передачи короткой преамбулы (один OFDM-символ, использует только четные несущие). За ним следует собственно информационный пакет, сформированный на канальном уровне.
Длительность OFDM-кадров может составлять 2,5; 4; 5; 8; 10; 12,5; и 20 мс. Заданный базовой станцией, период построения кадров не может изменяться, поскольку в этом случае потребуется ресинхронизация всех АС.
Запрос на установление соединения не отличается от принятого в стандарте IEEE 802.16, за исключением дополнительного режима «концентрированного» запроса[37]. Он предназначен только для станций, способных работать с отдельными субканалами. В этом режиме в интервалах конкурентного доступа (заданных в UL-MAP) АС может передать короткий 4-разрядный код на одном из 48 субканалов, каждый из которых включает четыре несущих. Всего предусмотрено восемь кодов. Таблица кодов и подканалов приведена в тексте стандарта IEEE 802.16. Код и номера канала АС выбирает случайным образом.
Получив кодовое сообщение, БС предоставляет АС интервал для передачи «обычного» запроса на предоставление доступа (заголовки запроса канального уровня) – если это возможно. Однако в отличие от других механизмов, БС в UL-MAP не указывает идентификатор запросившей ее станции, а приводит номера кода запроса, подканала, а также порядковый номер интервала доступа, в течение которого был передан запрос. По этим параметрам АС и определяет, что интервал для запроса полосы передачи предназначен ей. Выбор момента для передачи 4-разрядного кода запроса доступа происходит случайным образом, по описанному выше алгоритму обращения к каналу конкурентного доступа.
Отметим, что в режиме OFDM канальный ресурс может предоставляться не только во временной области, но в отдельных подканалах (группах подканалов), если БС и абонентские станции поддерживают такую возможность. Одно из наиболее важных применений такой опции – Mesh-сеть.
Формально Mesh-сеть – это вид топологии сети IEEE 802.16 в режиме OFDM, и ее физический уровень – это OFDM. Поэтому различия Mesh-сети с уже рассмотренными режимами проявляются не только, да и не столько на физическом уровне. Основное отличие Mesh-сети от рассматриваемой до сих пор архитектуры «точка-многоточка» – в том, что если в последнем случае АС может общаться только с БС, то в Mesh-сети возможно взаимодействие непосредственно между АС. Поскольку сети стандарта IEEE 802.16 ориентированы на работу с широкими частотными каналами, Mesh-сети вошли в стандарт вовсе не с целью создания одноранговых локальных сетей – для этого есть стандарты группы IEEE 802.11. Причина в ином – необходим инструмент построения широкополосной сети, в которой трафик может передаваться по цепочке из нескольких станций, ликвидируя тем самым проблемы передачи при отсутствии прямой видимости. Соответственно и все механизмы управления, в принципе позволяющие построить децентрализованную распределенную сеть, ориентированы все же на древовидную архитектуру, с выделенной базовой станцией (корневой узел) и доминирующими потоками БС-АС.
В Mesh-сети все станции (узлы) формально равноправны. Однако практически всегда обмен трафика Mesh-сети с внешним окружением происходит через один определенный узел (см. рис. 3.15). Такой узел называют базовой станцией Mesh-сети, именно на него возлагается часть необходимых для управления Mesh-сетью функций. При этом управление доступом может происходить либо на основе механизма распределенного управления, либо централизованным способом, под управлением БС. Возможна и комбинация этих методов.
Базовое понятие в Mesh-сети – соседи. Под соседями определенного узла понимают все узлы, которые могут устанавливать с ним непосредственное соединение. Все они образуют соседское окружение. Узлы, связанные с заданным узлом через соседские узлы, называют соседями второго порядка. Могут быть соседи третьего порядка и т.д.
В Mesh-сети нет понятия восходящих/нисходящих каналов. Весь обмен происходит посредством кадров. Станции передают сообщения либо в отведенные им временные интервалы (в соответствии с предшествующим значением каналов), либо получают доступ к каналам произвольным (случайным) образом. Каждый узел имеет уникальный 48-разрядный MAC-адрес. Кроме того, для идентификации внутри Mesh-сети станциям присваивается 16-разрядный сетевой идентификатор. Каждый узел постоянно хранит список данных обо всех своих соседях (с указанием удаленности, сектора для направленной антенны, примерной необходимой мощности передатчика для связи, задержки распространения сигнала и т.п.) и транслирует его в сеть с заданной периодичностью. На основании этих списков от каждого из узлов происходит управление сетью.