Смекни!
smekni.com

Технология WiMax (стр. 10 из 12)

· 4-битовым идентификатором ключа авторизации.

· Временем жизни ключа авторизации. Может принимать значение от 1 дня до 70 дней. Значение по умолчанию 7 дней.

· 128-битовым ключом шифрования ключа (Key encryption key, KEK). Используется для шифрования и распределения ключей TEK.

· Ключом HMAC для нисходящих сообщений (downlink) при обмене ключами TEK.

· Ключом HMAC для восходящих сообщений (uplink) при обмене ключами TEK.

· Списком data SA, для которых данная абонентская станция авторизована.

Процедура аутентификации

Рис. 6.1

KEK вычисляется следующим образом:

1. Проводится конкатенация шестнадцатеричного числа 0x53 с самим собой 64 раза. Получаются 512 бит.

2. Справа приписывается ключ авторизации.

3. Вычисляется хэш-функция SHA-1 от этого числа. Получаются 160 бит на выходе.

4. Первые 128 бит берутся в качестве KEK, остальные отбрасываются.

Ключи HMAC вычисляются следующим образом:

1. Проводится конкатенация шестнадцатеричного числа 0x3A (uplink) или 0x5C (downlink) с самим собой 64 раза.

2. Справа приписывается ключ авторизации.

3. Вычисляется хэш-функция SHA-1 от этого числа. Получаются 160 бит на выходе. Это и есть ключ HMAC.

Для шифрования передаваемых данных необходим специальный ключ, который носит название TEK[48]. Этот ключ выбирается базовой стацией случайно, однако при его передаче на абонентскую станцию используется ключ AK, а также два дополнительно вырабатываемых ключа: ключ шифрования ключей – КЕК[49] и ключ аутентификации сообщений – HMACkey[50]. Ключ TEK шифруется одним из следующих способов:

с помощью алгоритма 3DES на ключе KEK, при этом длина ключа KEK равна 112 бит;

с помощью системы шифрования RSA, открытый ключ берется из цифрового сертификата Х.509;

при помощи алгоритма AES на ключе KEK, длина которого в этом случае равна 128 бит.

При обмене сообщениями хэш-функция HMAC-SHA1, которая помимо контроля целостности обеспечивает защиту от подмены (так как использует ключ АК, известный только АС и БС) (см. рис. 6.1Для шифрования сообщений стандарт предусматривает использование алгоритма DES в режиме CBC или алгоритм AES в режиме CCM. Сам процесс шифрования показан на рис.6.3для алгоритма DES).

Передача ключа шифрования данных

Рис. 6.2

Процесс шифрования данных при помощи алгоритма DES в режиме CBC


Рис. 6.3

Структура шифрованного сообщения при использовании алгоритма AESPN- номер пакета

Рис. 6.4

Недостатки.

Дефицит оборудования, полностью отвечающего всем требованиям и стандартам, которые разрабатываются и принимаются организацией WiMAX – Forum. Оборудование, которое выпускается для WiMAX разными производителями, не совместимо друг с другом и технические характеристики существенно отличаются от тех, что были заложены в стандарт.

Ограничения использования частот введенные Гос. Комиссией по распределению частот. После введения этих ограничений радиус действия и мощность базовых станций в диапазонах, в которых работает WiMAX, сильно ограничили, и в крупном городе, численность населения которого больше 1 млн. человек, радиус действия не должен превышать 3 км.Устройства с поддержкой WiMAX дороги Пока что очень ограниченное покрытие сети.


6 ОПРЕДЕЛЕНИЕ ЗАДАНИЯ И ЦЕЛИ РАБОТИ

Обеспечить быстроту развертывания, высокую скорость передачи данных, качественную защиту информации передаваемой по сети и мобильность передвижения абонентов. Обеспечить при помощи сети стандарта WiMAX 802.16е доступ к услугам информационных и коммуникационных технологий и сервисных приложений. Основным заданием беспроводной сети является обеспечить высокую пропускную способность, надёжность, мобильность.

Тема дипломной работы состоит в исследовании беспроводной сети стандарта WiMAX 802.16е. Исследованию установки связи между базовой и мобильной станциею, скоростью и надежностью передаваемых пакетов, их криптостойкостью и устойчивостью к внешним помехам. Изучение работы сети в условиях максимального покрытия территории.

Цель работы – изучить структуру, принципы работы и построения сети стандарта WiMAX 802.16е в пределах города. Исследовать качество передаваемой информации (видео, аудио и текстовой) в режиме мобильного передвижения клиента в пределах сети от одной базовой станции к другой. Проверить надежность и защиту передаваемых данных.


СПИСОК ЛИТЕРАТУРЫ

1. Вишневский В., Портной С., Шахнович И. «Энциклопедия WiMAX. Путь к 4G». "Техносфера" · 2009 г.

2. Шахнович И. Статья: «Стандарт широкополосного доступа IEEE 802.16»

3. В.М. Вишневский, А.И. Ляхов, С.Л. Портной, И.В. Шахнович «Широкополосные беспроводные сети передачи информации» М. Техносфера, 2005.

4. WiMAX Forum http://www.wimaxforum.org/.


Теоретичнийоглядрозрахункупокриття WiMax

Розрахунокпокриття WiMax – доситьнеоднозначнийпроцес, щозалежитьвідвеликоїкількостіпараметрівсередовищапередачітатих, щозакладенівбудовусистеми WiMax. Розрізняють дві стратегії побудови мережевої інфраструктури WIMAX.

Перша стратегія орієнтована на отримання максимальної щільності потоку даних на заданій території. Дана стратегія застосовується в великих містах з високою щільністю населення з розвиненою проводовою мережевою інфраструктурою. Основною метою є забезпечення конкурентності з проводовим широкосмуговим доступом DSL і надання мультимедійних послуг.

Друга стратегія, застосовна в умовах відсутності або низького рівня конкуренції з боку дротяних систем, припускає таке розміщення базових станцій, яке забезпечує отримання максимальної зони покриття із забезпеченням заданої щільності потоку даних. Дана стратегія застосовна в сільських районах, а також в містах і обласних центрах з низьким розвитком дротяної інфраструктури, що характерний для більшості регіонів України. Реалізація даної стратегії дозволяє отримувати щільність потоку даних 1-6 Mbps/кв.км. Мета реалізації даної стратегії полягає в забезпеченні потрібної для послуг швидкості, що надаються оператором, передачі на максимальних територіях.

Реалізація стратегії максимізації щільності потоку даних на дозволяє при обмеженому частотному ресурсі отримати конкурентну з DSL густину потоку даних (20-40 Mbps/ кв.км) при високій щільності розміщення базових станцій (БС) Base Spacing,що рівна 1-2 км. При цьому TDD БС мають можливість повторного використання частот на одній БС і можливості collocation БС - синхронізації роботи БС з метою виключення взаємних перешкод. В умовах обмеженості частотного ресурсу це дозволяє TDD БС досягати великих значень щільності потоку даних в порівнянні з продуктивнішим устаткуванням FDD, що вимагає для своєї роботи значного частотного ресурсу.

Реалізація стратегії максимізації площі територій, що покриваються послугою, ускладнюється відносно високими втратами потужності радіосигналу при розповсюдженні радіохвиль в діапазоні порядку частот 5 Ггц. Ці втрати на частоті 5 Ггц декілька вище за аналогічні втрати на нижчих частотах 2.5 Ггц і 3.5 Ггц. Проте, застосування стратегії максимізації території, що покривається, на частоті 5 Ггц для фіксованого безпровідного доступу достатньо ефективно. Річ у тому, що фіксований доступ припускає оснащення абонентських терміналів зовнішніми антенами. У мережах WIMAX це можуть бути антени для використання усередині приміщень, якими оснащуються (self-installable) абонентські термінали, що інсталюються абонентами самостійно, і зовнішні антени, що встановлюються поза приміщеннями, вимагають професійної інсталяції оператором зв'язку. По оцінках фахівців, більшість абонентських терміналів, що працюють в мережах WIMAX фіксованого доступу в діапазоні частот 5 Ггц, будуть оснащені зовнішніми антенами. При цьому зовнішні антени 5 Ггц мають в середньому на 5-7 dbi більше посилення в порівнянні з антенами аналогічних розмірів діапазону 2.5 і 3.5 Ггц. Вище посилення зовнішніх абонентських антен якраз і компенсує підвищені втрати при розповсюдженні радіосигналу.

Таким чином, застосування устаткування стандарту IEEE 802.16-2004 дозволяє покривати послугою широкосмугового доступу обширні території з мінімумом витрат, тобто ефективно реалізовувати стратегію максимізації території, що покривається. При цьому важливою особливістю WIMAX мереж є відносно невеликий радіус обслуговування self-installable абонентських терміналів. Втрати потужності при розповсюдженні радіосигналу в умовах міської забудови поза прямою видимістю в діапазоні 5 Ггц набагато більш значні чим, наприклад, в діапазоні частот 2.5 Ггц. Ці підвищені втрати неможливо компенсувати застосуванням в self-installable абонентських терміналах потужних антен. Тому максимальна дальність обслуговування таких абонентів поза прямою видимістю базової станції значно менша, ніж на нижчих частотах, і не перевищує 1 км. Таким чином, в мережах WIMAX діапазону частот 5 Ггц self-installable абонентські термінали практично застосовуватися не будуть. Установка абонентських outdoor терміналів із зовнішніми направленими антенами (зокрема з інтегрованими в корпус терміналу антенами) вимагає професійних навиків і зазвичай проводиться силами оператора зв'язку. Установка абонентського терміналу не вимагає наявності прямої видимості на базову станцію за умови дотримання двох умов:

1) наявність потрібного для використовуваної модуляції відношення SNR сигнал/шум;

2) необхідного перевищення (fade margin 6-12 db) рівнем корисного сигналу відповідного використовуваній модуляції порогу чутливості. Зазвичай дані умови виконуються для абонентських терміналів, оснащених зовнішньою антеною або інтегрованою антеною з високим посиленням, на дальності не більше 3-5 км. від базової станції. На вищих дальностях при установці абонентських терміналів потрібно забезпечити пряму видимість (без обмежень на ступінь закриття зони Френеля).