Смекни!
smekni.com

Технические характеристики компьютера (стр. 2 из 2)

Встроенный контроллер памяти

Долгое время, этот термин не был применим к ЦП. Однако, компания AMD в своём новом поколении процессоров К8 взяла да и встроила контроллёр памяти в процессор. Как уже неоднократно повторялось, ЦП всё время работает с ОЗУ. И скорость его работы с оперативной памятью - это важнейший параметр на пути обеспечения высокой производительности. Раннее, существовала такая схема работы ЦП с ОЗУ: "Процессор - Чипсет - ОЗУ". Этот путь решили сократить и "перенесли" контроллёр памяти из чипсета - в ЦП. Тем самым схема упростилась до "Процессор - ОЗУ". Intel придерживается традиционной схемы, в которой участвует чипсет. По крайней мере, пока придерживается. Поэтому надо сказать пару слов о процессорах AMD. На данный момент, существует две актуальных платформы для AMD. Это - Socket 754 и Socket 939. Процессоры под эти платформы не отличаются архитектурно, но имеют отличие в виде разного контроллёра памяти: у Соккет 939 - двухканальный контроллёр, а у 754 - одноканальный. Т.е. при условии использования двух планок памяти, система на С939 будет показывать пиковую пропускную способность памяти в два раза больше, чем на 754 (при прочих равных). Но не стоит так пугаться систем с одноканальным контроллёром памяти: для процессоров К8 разница в производительности составляет менее 10%. Дело в том, что скорость работы с памятью более зависит от её латентности (в современных условиях), чем от ПСП (ПСП - Пиковая Пропускная Способность), но это уже совсем другая тема.

Зачастую при выборе ПК покупатели обращают внимание на качество монитора в последнюю очередь. Сегодняшний пользователь неплохо разбирается в технических характеристиках компьютера, что же касается монитора.

Основные технические характеристики мониторов

Тип электронно-лучевой трубки (ЭЛТ). Различают трубки трех основных типов: сферические (чаще всего встречаются в недорогих 14-дюймовых мониторах), прямоугольные с почти плоским экраном (ими оборудованы практически все современные модели с диагональю 15-21 дюйм) и трубки типа Trinitron (DiamondTron, SonicTron). Отличие последних заключается в том, что их экран представляет собой сегмент цилиндра, тогда как экраны других типов являются сегментами сферы.

Шаг точек/полосок (dot/stripe pitch). Каждый светящийся элемент экрана формируется тремя точками люминофора - красного, зеленого и синего свечения. Расстояние между центрами этих мельчайших элементов называется шагом точек (или шагом полосок для трубок с апертурной решеткой). У современных мониторов шаг точек, как правило, не превышает 0,28 мм, хотя в моделях с диагональю 20-21 дюйм он может быть и больше, так как в этом случае повышенная зернистость изображения не так заметна из-за большой площади экрана.

Типтеневоймаски (shadow mask/aperture grille). Теневая маска - это своего рода фильтрующее "сито", расположенное на пути электронов перед люминофором и обеспечивающее точное попадание электронов в нужные точки люминофора. Большинство мониторов оснащено теневыми масками двух типов - дельтовидными масками, представляющими собой перфорированные решетки с треугольным расположением отверстий, и апертурными решетками (щелевыми масками), состоящими из тонких вертикально натянутых металлических нитей, стабилизируемых одной или двумя более толстыми горизонтальными нитями. Больше распространены кинескопы с дельтовидными масками. Подвергаясь электронной "бомбардировке", маска нагревается и от этого расширяется, что ведет к ухудшению фокусировки изображения. Во избежание подобных термических деформаций большинство современных дельтовидных масок изготавливаются из инвара (от invariabilis (лат.) - неизменный) - специального сплава, обладающего малым коэффициентом температурного расширения, в состав которого входят железо и никель. Апертурные решетки используются только в трубках типа Trinitron.

Кадровая частота (vertical refresh rate). С помощью фокусирующей и отклоняющей систем тонкий электронный луч "пробегает" построчно по экрану из верхнего левого угла в правый нижний. Число "пробегов" луча в единицу времени называется кадровой частотой монитора, или частотой регенерации. Так, кадровая частота в 60 Гц означает 60 перерисовок экрана в секунду. Нужно отметить, что при частоте кадров менее 70 Гц человеческий глаз, как правило, замечает некоторое мерцание экрана; в таком режиме с монитором можно работать не более часа в день, иначе это может отрицательно сказаться на зрении и привести к возникновению головных болей.

Кроме того, в спецификациях некоторых мониторов встречаются упоминания о режимах с чересстрочным (interlaced) сканированием экрана (при этом кадровая частота обычно составляет 87 Гц). В таких режимах электронный луч рисует изображение за два прохода, т. е. сначала воздействию электронного потока подвергаются только все нечетные строки, а затем - все четные. Чересстрочная развертка чрезвычайно вредна для глаз, все современные мониторы даже при максимальном разрешении имеют построчную (non-interlaced, NI) кадровуюразвертку.

Строчнаячастота (horizontal refresh rate). Эта характеристика определяет скорость перемещения луча вдоль строки. От строчной частоты зависит разрешение по вертикали при фиксированной кадровой частоте. Разумеется, чем более высокую строчную частоту поддерживает монитор, тем качественнее изображение.

Ширина полосы пропускания видеосигнала (bandwidth). Данная характеристика определяет максимальное количество элементов изображения, которые могут быть выведены в строке. Чем шире полоса пропускания, тем больше четкость изображения. Ширина полосы пропускания рассчитывается по формуле:

W = H x V x F,

где H - максимальное разрешение по вертикали, V - максимальное разрешение по горизонтали, F - кадровая частота, на которой способен работать монитор при максимальном разрешении (например, в режиме 1024Ё768 точек при частоте регенерации 60 Гц ширина полосы пропускания составит 47 МГц). Полученная величина должна быть несколько меньше полосы пропускания, указанной производителем. Кроме того, зная значение полосы пропускания монитора, несложно оптимально подобрать видеоплату, которая должна обеспечивать ширину полосы видеочастот по крайней мере не меньшую, чем полоса пропускания монитора.

Динамическая фокусировка (dynamic focus). Расстояние, которое необходимо преодолеть электрону до центра экрана, несколько меньше, чем расстояние до краев или углов. Вследствие этого по краям экрана пиксел искажается, принимая эллипсоидную форму и увеличиваясь в размерах. Для поддержания одинакового размера электронного пятна по всему полю кинескопа применяется динамическая фокусировка, которая достигается изменением ускоряющего или фокусирующего напряжений системы пушек кинескопа по параболическому закону в соответствии с перемещением электронного луча от центра к краям экрана. Мониторы, соответствующие европейскому стандарту ISO 9241-3, практически не имеют искажений по краям экрана.

Антибликовое покрытие (anti-glare coating). Такое покрытие уменьшает отражение внешнего света от стеклянной поверхности экрана. Различают несколько типов покрытия: например, специальная, рассеивающая световой поток, гравировка экрана (etching); более эффективное кремниевое покрытие (silica coating), часто применяемое в стеклянных фильтрах; особые виды устанавливаемых на кинескоп антибликовых панелей (AR panel). Следует, однако, отметить, что первые два способа уменьшения отражающей способности экрана несколько снижают контрастность и ухудшают цветопередачу, поэтому мониторы с блестящими экранами обычно передают цвета ярче.

Антистатическое покрытие (anti-static coating). Это покрытие препятствует возникновению на поверхности экрана электростатического заряда, притягивающего пыль и неблагоприятно влияющего на здоровье пользователя.

Стандарты на мониторы

Выделяют две основные группы стандартов и рекомендаций по безопасности и эргономике.

К первой группе относятся стандарты UL, CSA, DHHS, CE, скандинавские SEMRO, DEMKO, NEMKO и FIMKO, а также FCC Class B. Из второй группы наиболее известны MPR-II, TCO "92 и TCO"95, ISO 9241-3, EPA Energy Star, TUV Ergonomie.

FCC Class B. Этот стандарт разработан канадской Федеральной комиссией по коммуникациям для обеспечения приемлемой защиты окружающей среды от влияния радиопомех в замкнутом пространстве. Оборудование, соответствующее требованиям FCC Class B, не должно мешать работе теле- и радиоаппаратуры.

MPR-II налагает ограничения на излучения от компьютерных мониторов и промышленной техники, используемой в офисе.

TCO"92 требует уменьшения электрического и магнитного полей до технически возможного уровня с целью защиты пользователя. Для того чтобы получить сертификат ТСО "92, монитор должен отвечать стандартам низкого излучения (Low Radiation), т. е. иметь низкий уровень электромагнитного поля, обеспечивать автоматическое снижение энергопотребления при долгом неиспользовании, отвечать европейским стандартам пожарной и электрической безопасности. Требования TCO "92 являются гораздо более жесткими, чем требования MPR-II.

TUV Ergonomie - немецкий стандарт эргономики. Мониторы, отвечающие этому стандарту, прошли испытания согласно EN 60950 (электрическая безопасность) и ZH 1/618 (эргономическое обустройство рабочих мест, оснащенных дисплеями), а также отвечают шведскому стандарту MPR-II.

EPA Energy Star VESA DPMS. Согласно этому стандарту монитор должен поддерживать три энергосберегающих режима - ожидание (stand-by), приостановку (suspend) и "сон" (off). В режиме ожидания изображение на экране пропадает, но внутренние компоненты монитора функционируют в нормальном режиме, а энергопотребление снижается до 80% от рабочего состояния. В режиме приостановки, как правило, отключаются высоковольтные узлы, а потребление энергии падает до 30 Вт и менее. И наконец, в режиме так называемого "сна" монитор потребляет не более 8 Вт, а функционирует у него только микропроцессор. При нажатии любой клавиши клавиатуры или движении мыши монитор переходит в нормальный режим работы.

Российский стандарт ГОСТ 27954 - 88 на видеомониторы персональных ЭВМ. Требования этого стандарта обязательны для любого монитора, продаваемого в РФ.