Смекни!
smekni.com

Создание макроса на языке Statistica Visual Basic для проверки гипотезы о нормальности остатков регрессии (стр. 6 из 7)

3. Статистику Дарбина-Уотсона.

4. Графики: гистограмму остатков, диаграмму рассеяния, график на нормальной вероятностной бумаге.

5. Таблицу эмпирических и теоретических частот.

Оба модуля написаны на языке STATISTICAVISUALBASIC. Рассмотрим схему работы программы regres-normal (рис. 5).


Рис. 5. Схема работы программы regres-normal

Весь блок программного кода в совокупности представляет собой модуль. Модуль regres-normal состоит из ряда операторов, организованных в шесть разделов: это раздел объявлений, начинающийся оператором Option Base 1, процедура Main, функция InputDialog, функция UI, процедуры MultipleRegression и NormalDistribution.

Переменные, содержащиеся в разделе объявлений, представляют собой глобальные переменные (Приложение В, табл. 1). Выполнение программы начинается с процедуры MAIN (рис. 5). Данная процедура вызывает функцию InputDialog, которую в свою очередь обслуживает функция UI. Функция InputDialog отображает пользовательский диалог "Multiple Regression. Residual Analysis", переменные Alpha иAlphaValue инициализируются значениями, содержащимися в соответствующих элементах управления типа TextBox. Функция UI отображает диалог выбора переменных для анализа ("Select dependent and independent variable lists:"). Здесь происходит инициализация списков зависимых и независимых переменных (VarList1(),VarList2()), а также переменных типа Long, хранящих количество элементов в этих списках (InList1, InList2). В случае отсутствия ошибок при вызове пользовательских диалогов далее в процедуре Mainпроисходит последовательный вызов процедур MultipleRegressionи NormalDistribution.

В процедуре MultipleRegression осуществляется регрессионный анализ с использованием данных из текущей таблицы (S1), а также происходит инициализация вновь созданной таблицы остатков (NewSpreadsheet). В процедуре NormalDistribution осуществляется проверка остатков из таблицы NewSpreadsheetна нормальное распределение.

3.2 Проверка гипотезы о нормальности остатков в модели вторичного рынка жилья в г. Минске

В модели исследуется зависимость стоимости вторичного жилья в г.Минске (Cena) от следующих факторов: общей площади квартиры (PlOb), возраста дома (Vozrast). Для работы использованы данные о 154 квартирах г. Минска за 2006 год. В модель также включена бинарная, «фиктивная» переменнаяType, которая принимает значение 1, если квартира находится в кирпичном доме и значение 0 для всех остальных случаев.

Построенная модель стоимости квартир в г. Минске имеет вид:

(1)

Все коэффициенты регрессии статистически значимы, что показывает t-статистика и соответствующие значения вероятности (p), которые ниже уровня статистической значимости 0,05.

Для построенной модели (1) коэффициент корреляции

(значение близко к 1, что указывает на тесную свяь между зависимой переменной и факторами). Значение критерия Фишера для проверки гипотезы о достоверности коэффициента корреляции:
;
(R достоверно отличен от 0, изучаемый признак имеет связь хотя бы с одним из регрессоров). Коэффициент детерминации
, т.е. 90% дисперсии результативного признака обусловлено влиянием регрессии, а 10% - другими факторами. Анализ остатков произведён при помощи статистики Дарбина-Уотсона
, коэффициент автокорреляции остатков
. Значит, автокорреляция в остатках отсутствует.

Остатки распределены нормально:

при
.

Рис. 1 График остатков на нормальной вероятностной бумаге

На рис. 1 значения по оси y представляют собой функциональное преобразование кривой нормального распределения в прямую. Если наблюдаемые остатки, представленные на оси х, распределяются по нормальному закону, то все значения попадают на прямую линию на графике. В представленном графике остатки расположены достаточно близко к линии, а следовательно можно сделать предположение об их нормальном распределении.

Рис. 2 Гистограмма распределения остатков

Для графической оценки вида распределения также приводится гистограмма распределения остатков (рис.2). Его можно трактовать как соответствующее нормальному.

Рассмотрим график зависимости остатков εiот теоретических значений результативного признака

(рис. 3).

Рис. 3 График зависимости остатков εiот теоретических значений результативного признака

.

Из рисунка 3 можно сделать вывод о наличии гетероскедастичности: остатки εi имеют неодинаковую дисперсию.

Уравнение регрессии имеет наглядную интерпретацию. Так, увеличение общей площади квартиры на 1м2 увеличивает ее цену на 909,445 у.е. Отрицательное значение коэффициента при Vozrast (-58,685) означает, что увеличение возраста квартиры на 1год уменьшает ее цену на 58,685у.е. Квартира в кирпичном доме (Type=1) стоит дороже на 1914,209 у.е., чем аналогичная квартира, например, в панельном доме.

Использование данной модели для прогноза возможно в случае устранения гетероскедастичности, связанной с неоднородностью выборки. Для этого необходимо провести предварительный отбор однородных случаев, а затем осуществить построение модели.


ЗАКЛЮЧЕНИЕ

Математическая статистика и ее применение в экономике - эконометрика - позволяют строить экономические модели и оценивать их параметры, проверять гипотезы о свойствах экономических показателей и формах их связи. В основе методов, с помощью которых строятся экономические модели, лежит корреляционно-регрессионный анализ. Множественный регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой) обусловлено влиянием нескольких независимых величин, а множество всех прочих факторов, также оказывающих влияние на зависимую переменную, принимается за постоянные и средние значения.

Наиболее распространенным в практике статистического оценивания параметров уравнений регрессии является метод наименьших квадратов (МНК). Этот метод основан на ряде предпосылок относительно природы данных и результатов построения модели. Основные из них - это некоррелированность факторов, входящих в уравнение, линейность связи, отсутствие автокорреляции остатков, равенство их математических ожиданий нулю и постоянная дисперсия (гомоскедастичность). Эмпирические данные не всегда обладают такими характеристиками, т.е. предпосылки МНК нарушаются. Применение этого метода в чистом виде может привести к таким нежелательным результатам, как смещение оцениваемых параметров, снижение их состоятельности, устойчивости, а в некоторых случаях может совсем не дать решения. В случае нарушения предпосылок МНК, необходимо корректировать модель.

После оценивания уравнения регрессии по методу наименьших квадратов нужно всегда исследовать остатки на нормальность. В случае нарушения данного предположения модель не является адекватной и не может быть использована для прогнозов.

В пакете STATISTICA имеется внутренний язык программирования StatisticaVisual, который добавляет богатый арсенал из более чем 10000 новых функций к стандартному синтаксису Microsoft Visual Basic и является, таким образом, одним из самых функционально богатых и обширных интерфейсов прикладного программирования. SVB также предоставляет широкие возможности по созданию макросов.

В ходе написания данной курсовой работы был создан макрос на языке SVB для проверки гипотезы о нормальности остатков регрессии. Необходимость разработки данного приложения связана с особенностями осуществления регрессионного анализа в пакете STATISTICA. Написанный модуль был использован при эконометрическом моделировании вторичного рынка жилья в г. Минске. Разработанное программное средство может в дальнейшем применятся при построении регрессионных моделей в пакете STATISTICA.


ПРИЛОЖЕНИЕ А

Листинг программы

Option Base 1

Dim S1 As Spreadsheet

Dim NewSpreadsheet As New Spreadsheet

Public AlphaValue As Double

Public Alpha As Double

Dim VarList1 () As Long

Dim VarList2 () As Long

Dim Nvars As Long

Dim InList1 As Long

Dim InList2 As Long

Dim ret As Integer

Sub Main

On Error GoTo NoInputSpreadsheet

Nvars = ActiveDataSet.NumberOfVariables

On Error GoTo Finish

ReDim VarList1(1 To Nvars)

ReDim VarList2(1 To Nvars)

If Not InputDialog Then GoTo Finish

MultipleRegression

NormalDistribution


Finish:

Exit Sub

NoInputSpreadsheet:

MsgBox "Open a data file (Spreadsheet) for this analysis", _

vbCritical

End Sub

Function InputDialog As Boolean

On Error GoTo Finish

InputDialog=False

Begin Dialog UserDialog 390,147, _