- число степеней свободы для остаточной суммы квадратов отклонений. [Елисеева-136-137]
Критический уровень t при любом уровне значимости зависит от числа степеней свободы, которое равно : число наблюдений минус число оцененных параметров. [Доугерти 154]
Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции (
Показатель множественной корреляции может быть найден как индекс множественной корреляции:
где
Границы изменения индекса множественной корреляции: от 0 до 1. Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов. [Елисеева-113]
Коэффициент детерминации
Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:
где
Смысл проверяемой гипотезы заключается в том, что все коэффициенты линейной регрессии, за исключением свободного параметра, равны нулю (случай отсутствия линейной функциональной связи).
Величина F имеет распределение Фишера с степенями свободы . Распределение Фишера - двухпараметрическое распределение неотрицательной случайной величины, являющейся в частном случае при m = 1 квадратом случайной величины, распределенной по Стьюденту. [Салманов 48]. В определенном смысле этот тест дополняет t-тесты, которые используются для проверки значимости вклада отдельных случайных переменных, когда проверяется каждая из гипотез
Для проверки нулевой гипотезы при заданном уровне значимости по таблицам находится критическое значение Fкрит, и нулевая гипотеза отвергается, если
Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это особенно важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных или, наоборот, включения их в это число. [Салманов 48].
2.2 Требования к остаткам
При оценке параметров уравнения регрессии применяется метод наименьших квадратов (МНК). При этом делаются определенные предпосылки относительно случайной составляющей
случайная составляющая
Проверка статистической достоверности коэффициентов регрессии и корреляции осуществляется с помощью t-критерия Стьюдента, F-критерия Фишера и Z-преобразования (для коэффициентов корреляции). При использовании этих критериев делаются предположения относительно поведения остатков
Оценки параметров регрессии должны быть несмещенными, состоятельными и эффективными. Условия, необходимые для получения несмещенных, состоятельных и эффективных оценок, представляют собой предпосылки МНК, соблюдение которых желательно для получения достоверных результатов регрессии.
Исследования остатков
1) случайный характер остатков;
2) нулевая средняя величина остатков, не зависящая от
3) гомоскедастичность - дисперсия каждого отклонения
4) отсутствие автокорреляции остатков. Значения остатков
5) остатки подчиняются нормальному распределению.
Если распределение случайных остатков
Прежде всего проверяется случайный xapактер остатков
С этой целью стоится график зависимости остатков
Рис.3.2. Зависимость случайных остатков
Если на графике получена горизонтальная полоса, то остатки
Возможны следующие случаи: если
а) остатки
б) остатки
в) остатки
В случаях а), б), в) необходимо либо применять другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки
Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что
Вместе с тем несмещенность оценок коэффициентов регрессии, полученных МНК, зависит от независимости случайных остатков и величин х, что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью строится график зависимости случайных остатков
Рис. 3.4. Зависимость случайных остатков от величины фактора
Если остатки на графике расположены в виде горизонтальной полосы (рис. 3.4), то они независимы от значений