Смекни!
smekni.com

Современные микропроцессоры (стр. 4 из 5)

В настоящее время архитектура этого нового процессора является очень мощной, которая решит проблемы многих пользователей.

IntelCore 2 Quad

IntelCore 2 Quad — семейство новых четырёхъядерных процессоров Intel, в котором объединяются два двухъядерных кристалла на одной платформе. Для производства процессора была использована инновационный 45-нм технологический процесс. Хотя эти процессоры и являются очередными вариантами широко распространённой микроархитектуры Core, они представляют немалый интерес. Дело в том, что Quad– это не простой результат перевода предыдущих 65-нм процессорных ядер на новую производственную технологию. В них инженеры Intel реализовали целый ряд усовершенствований, направленных на увеличение производительности, достигаемое без роста тактовой частоты. В его основе лежит два полупроводниковых двухъядерных кристалла Wolfdale, убранных в единую процессорную упаковку.

Для освоения 45-нм технологического процесса компания провела огромную научно-исследовательскую работу, в рамках которой классические диэлектрические материалы (в частности, оксид кремния), применяемые с 60-х годов прошлого века для производства интегральных микросхем, были заменены на принципиально новые (соединения редкоземельного металла гафния). Новые 45-нм транзисторы используют металлический затвор вместо затвора из поликристаллического кремния, а также диэлектрик с высокой диэлектрической проницаемостью (high-k) – силицид гафния.

Эти изменения в конструкции полупроводниковых элементов позволяют решить сразу несколько насущных задач. Новый технологический процесс с нормами 45 нм почти вдвое поднимает плотность расположения транзисторов на кристалле, а кроме того, примерно на 20 % увеличивает их скорость переключения и на 30 % снижает необходимую для этого мощность. В качестве дополнительного бонуса, благодаря новым материалам значительно уменьшаются и токи утечки: в канале исток-сток – ориентировочно в пять раз, а через диэлектрик затвора – примерно на порядок.

Благодаря новому технологическому процессу Intel собирается в течение следующего года нарастить частоты своих процессоров семейства Core 2 Quad до 3,0 ГГц, а линейки Core 2 Duo – до 3,33 ГГц, удерживая их при этом в рамках привычных тепловых пакетов 95 и 65 Вт, соответственно. Еще тодно преимущество новой технологии: процессоры будут обладать кэш-памятью второго уровня суммарным объёмом 12 Мбайт: по 6 Мбайт на каждые два ядра.

Иными словами, с внедрением нового технологического процесса никаких изменений в строении процессоров с четырьмя ядрами не произошло. Пары ядер всё также расположены на разных кристаллах и обмениваются данными через системную шину и оперативную память. Впрочем, измерение латентности кэш-памяти на практике показывает, что у нового процессора при увеличении в объёме он стал всё-таки слегка медленнее.

Вместе с увеличением объёма кэш-память новых CPU получила дополнительную функцию "enhanced cache line split load". Цель этого нововведения заключается в ускорении выборки из кэш-памяти неправильно выровненных данных, части которых могли бы быть помещены в одной строке, но попали в разные строки кэша. Новая функция пытается предугадать такие данные и сделать их выборку из кэша столь же быстрой, как если бы они лежали в одной строке. В теории, это усовершенствование может ускорить работу приложений, работа которых связана со сканированием трактов.

Процессоры Quad обладаюьт расширением системы SIMD-команд. В новом поколении своих CPU Intel ввёл поддержку набора SSE4.1, состоящего из 47 новых инструкций. Тем не менее, новые команды, несмотря на достаточно большое их количество, не представляют собой связанного множества, набор SSE4 включает разнородные дополнения к уже существующим SIMD-инструкциям. Новые команды, по традиции, должны будут помочь в увеличении скорости работы новых процессоров с трёхмерной графикой, с потоковым видео и в целом ряде научных вычислительных задач.

В заключение хочется заметить, что компания Intel взяла хороший темп смены технологических процессов и процессорных архитектур. Как планируется, новые микроархитектуры теперь будут предлагаться Intel каждые два года, а через год после их внедрения процессорные ядра должны будут переводиться на новый техпроцесс с внесением в них некоторых небольших усовершенствований. Согласно этому плану, ближе к концу следующего года ожидает встреча с принципиально новой архитектурой, известной сегодня под кодовым именем Nehalem.

Современные микропроцессоры компании АМD

Успешную конкуренцию микропроцессорам Intel составляет продукция компании AMD. По ряду показателей микропроцессоры этой компании занимают лидирующее положение. Отдельные интересные архитектурно-технические решения, впервые примененные в микропроцессорах AMD, впоследствии получили распространение в изделиях других производителей, в том числе и в микропроцессорах компании Intel.


Микропроцессор К5

В течение ряда лет AMD, отставая от Intel по крайней мере на одно поколение микропроцессоров, полагалась в основном на лицензированную технологию и вносила незначительные конструктивные изменения в выпускаемые микропроцессоры. Появление микропроцессора Pentium создало лля AMD прямую угрозу вытеснения с рынка, что стимулировало компанию к интенсификации работ по созданию нового семейства х86-совместимых микропроцессоров. Работы над К5 были начаты, когда еще не были известны подробности о процессоре Pentium. Инженерам AMD пришлось разрабатывать собственную микроархитектуру, обеспечивая при этом совместимость с существующим программным обеспечением для процессоров х86.

Первоначально AMD планировала начать поставки своего микропроцессора с тактовой частотой 100—120 МГц в 1995 году, однако было выпущено лишь несколько тысяч таких процессоров, а их тактовая частота составила всего 75 МГц. Основные поставки К5 начались в первом квартале 1996 года, после того как компания перешла на 0,35 мкм технологию, разработанную совместно с Hewlett-Packard. Это позволило довести число транзисторов до 4,2 млн на кристалле площадью 167 мм2.

К5 ]68] — это первый микропроцессор AMD, при создании которого не использовалась никакая интеллектуальная собственность Intel (за исключением микрокода), в то же время, он обладает лучшей по сравнению с процессорами Intel производительностью. Многие приложения, такие как MicrosoftExcel, Word, CorelDRAW, работали на процессорах серии К5 на 30% быстрее, чем на Pentium с той же тактовой частотой. Такая производительность достигалась в основном за счет увеличенного объема кэш-памяти и более прогрессивной суперскалярной архитектуры. Используемая в микропроцессорах AMD архитектура RISC86 .

Как известно, команды х86 отличает переменная длина и сложная структура, затрудняющие их декодирование и анализ существующих зависимостей между инструкциями по данным. В предлагаемой AMD архитектуре декодер, представляющий собой наиболее сложную часть микропроцессора, раз бивает длинные CISC-инструкции на небольшие RISC-подобные комгюнен ты, так называемые ROP (RISC-операции).

ROP напоминают команды микрокода микропроцессоров х86. Первые микропроцессоры с архитектурой х86 выполняли свой сложный набор микрокоманд, выбирая из внутренней постоянной памяти микрокод. В последних микропроцессорах х86 использование микрокода сведено к минимуму за счет применения простых команд и их аппаратной реализации.

В отличие от Pentium, вместо двух конвейеров для параллельного выполнения двух целочисленных операций, К5 имеет шесть параллельно функционирующих блоков. Одновременно с целочисленными операциями могут выполняться инструкции с плавающей точкой, загрузки/сохранения или перехода. Блок загрузки/сохранения может за один цикл выбирать из памяти две инструкции. Другим отличием от Pentium является то, что К5 может изменять последовательность выполняемых команд.

Блок выполнения операций с плавающей точкой (FPU) отвечает стандартам х86, однако по производительности несколько уступает FPU процессора Pentium.

Использованное в архитектуре К5 сочетание принципов CISC и RISC позволило преодолеть ограничения набора команд х86. Ценой увеличения сложности процессора AMD удалось повысить его производительность, сохранив совместимость с системой команд х86. Последнее весьма важно с учетом широкой распространенности программного обеспечения для этой микропроцессорной архитектуры.

Микропроцессор К6

Микропроцессор К6 был выпушен в 1997 году по технологии КМОП 0,35 мкм с пятислойной металлизацией, содержал 8,8 млн транзисторов на кристалле площадью 162 мм2, работал с тактовыми частотами 166, 200 и 233 МГц и устанавливался в разъем Socket 7.

Как и в К5, в К6 была применена суперскалярная архитектура RISC86 с раздельным декодированием/исполнением команд, обеспечивающая преемственность с системой команд х86 и достижение высокой производительности, свойственной микропроцессорам шестого поколения. К6 был оснащен мультимедийным расширением системы команд— ММХ. По производительности К6 при одной и той же тактовой частоте существенно превосходил Pentium ММХ и был сравним с PentiumPro. В отличие от PentiumPro, К6 одинаково успешно работал как с 32-разрядными, так и с 16-разрядными приложениями.

Высокая производительность процессора обеспечивалась благодаря ряду новых архитектурных и технологических решений.

· В процессоре выполняется преддекодирование команд х86 при их выборке в кэш-памяти. Каждая команда в кэш-памяти первого уровня снабжается битами преддекодирования, указывающими смещение начала следующей команды в кэш-памяти (от I до 15 байт).