Смекни!
smekni.com

Незаменимые полиненасыщенные жирные кислоты и их пищевые источники для человека (стр. 7 из 9)

Рис. 14. Летнее «цветение» воды сине-зелёными водорослями (цианобактериями) в эвтрофном водохранилище Бугач, расположенном в окрестностях г. Красноярска

Эвтрофные водоёмы, для которых характерно «цветение» воды сине-зелёными водорослями (цианобактериями) (рис. 14), могут быть очищены от этих вредоносных микроорганизмов путём так называемой биоманипуляции «top-down» (Гладышев, 2001). Суть биоманипуляции состоит в целенаправленном изменении трофической структуры водоёма, а именно в увеличении численности хищных рыб и уменьшении численности рыб, питающихся планктонными и бентосными беспозвоночными (рис. 15). Численность мелких беспозвоночных при этом увеличивается, и они поедают «лишние» микроводоросли, тем самым останавливая их «цветение» (рис. 15). Впервые в России биоманипуляция «top-down» была подготовлена и осуществлена в 2002-2003 годах на небольшом рекреационном водохранилище (Гладышев и др., 2006). В результате интродукции в водохранилище щуки и двукратного снижения численности карася прекратилось «цветение» сине-зелёных водорослей Microcystis (рис. 14) и начался рост перидиниевых водорослей, способных к синтезу ЭПК и ДГК. Понятно, что снижение биомассы сине-зелёных водорослей в результате биоманипуляции является лишь первым шагом к повышению ценной рыбопродукции. Здесь необходимы дальнейшие полномасштабные гидробиологические, ихтиологические и биохимические исследования.

Рис. 15. Схема биоманипуляции трофическими цепями в водных экосистемах для уменьшения биомассы фитопланктона. Увеличение численности хищника (справа) приводит к уменьшению биомассы фитопланктона (эффект трофического каскада)

Таким образом, в настоящее время имеются потенциальные возможности для повышения продукции ПНЖК в озёрах и водохранилищах путём перевода олиготрофных и эвтрофных водоёмов в статус мезотрофных, в которых предположительно может наблюдаться максимум продукции ЭПК и ДГК. Однако любое вмешательство в природу требует предварительного проведения тщательных научных исследований. Возможным вариантом повышения качества рыбопродукции является зарыбление ценными видами. Например, в озёра юга Хакасии многие годы зарыбляется пелядь, которая относится к лососеобразным рыбам и предположительно имеет высокое содержание ЭПК и ДГК. Пелядь в этих озёрах, ранее бывших практически безрыбными, быстро достигает товарных размеров и хорошо продаётся на местных рынках. Перспективным вариантом увеличения продукции ПНЖК представляется зарыбление водоёмов растительноядными рыбами, потребляющими водоросли и высшие водные растения, то есть образующими короткую пищевую цепь.

Наряду с задачами инвентаризации продукции ПНЖК в водных экосистемах и поиска научно обоснованных способов её повышения остро стоит проблема охраны водоёмов от антропогенного воздействия, приводящего к снижению производства в них полезных для человека биологически активных веществ. В настоящее время риски снижения продукции ПНЖК в природных водоёмах связаны в основном с тремя факторами: глобальным потеплением климата, антропогенным эвтро- фированием и загрязнением (рис. 16).

Рис. 16. Влияние антропогенных факторов на продукцию ПНЖК в водных экосистемах

Глобальное потепление, приводящее к по - вышению температуры воды, напрямую влияет на содержание ПНЖК в водных экосистемах. У водорослей, приспособленных к низким температурам, высокое содержание полинена- сыщенных жирных кислот, имеющих низкую температуру замерзания, обеспечивает оптимальную вязкость клеточных мембран, от которой зависит нормальное функционирование клетки. Чем ниже температура окружающей среды, тем больше должно содержаться в мембране «антифризов», а именно ПНЖК. При высоких температурах клеточная мембрана, наоборот, должна «затвердевать» и водоросли вместо ПНЖК начинают синтезировать насыщенные жирные кислоты с высокой температурой плавления (Guschina, Harwood, 2009). Поэтому, например, диатомовые водоросли, содержащие много ЭПК, доминируют в более холодных водах, тогда как в тёплых водах пре - имущество получают зелёные и сине-зелёные водоросли, вообще не синтезирующие длинноцепочечные ПНЖК. Подобная адаптация к температуре происходит и у беспозвоночных животных: виды, богатые ПНЖК, замещаются другими организмами. Например, в более тёплых озёрах снижение запасов ПНЖК в зоопланктоне происходит за счёт замены ко- пепод (веслоногих рачков), накапливающих в своей биомассе большое количество ДГК, на кладоцер (ветвистоусых рачков), содержащих очень мало ДГК (рис. 16) (Gladyshev et al., 2011a). Копеподы и кладоцеры служат основным кормом для мальков рыб. Как уже отмечалось, ДГК является необходимым компонентом для роста и развития рыб, поэтому снижение её концентрации в кормовых объектах автоматически приводит к снижению качества и количества рыбной продукции. Известно, что в связи с потеплением климата в озёрах Европы лососеобразные рыбы заменяются окунеобразными, а те, в свою очередь, замещаются карпообразными (Jeppesen et al., . Как видно из табл. 2, в ряду «лососевые ^ окуневые ^ карповые» происходит существенное снижение содержания ПНЖК в мясе рыб (рис. 16). Следует отметить, что в морях и океанах основу биомассы зоопланктона со - ставляют именно копеподы, богатые ПНЖК, поэтому морские пелагические рыбы (сельдь, сардина, мойва), т.е. обитающие в толще воды, где пищевая цепь начинается с планктона, как правило, имеют высокое содержание ЭПК и ДГК (табл. 2).

Наряду с потеплением климата антропогенное эвтрофирование, т.е. поступление в водоёмы минеральных элементов (азота и фосфора), также является причиной процветания сине-зелёных водорослей и подавления диатомей, богатых ПНЖК (рис. 16). Кроме азота и фосфора человек сбрасывает в водоёмы органические вещества и тяжёлые металлы. Влияние тех или иных органических загрязнений и тяжёлых металлов на продукцию ПНЖК в водных экосистемах ещё предстоит исследовать. Однако уже установлено, что, например, в р. Енисей антропогенное загрязнение приводит к снижению эффективности переноса ПНЖК по трофической цепи, т.е. продукция водорослей остаётся на прежнем уровне или даже возрастает, а вот содержание ЭПК и ДГК в кормовых организмах достоверно уменьшается (Гладышев и др., 2012). Кроме того, тяжёлые металлы, сбрасываемые в водоёмы со сточными водами, накапливаются в верхних звеньях трофической цепи, т. е. в рыбах. В этой связи возникает очень серьёзная проблема: потребляя рыбу, чтобы получить дозу необходимых для здоровья ПНЖК, человек может одновременно получить и токсичную дозу тяжёлых металлов (радионуклидов, пестицидов). Очевидно, что необходим постоянный мониторинг содержания не только полезных, но и токсических веществ в рыбной продукции. Такой мониторинг был начат для рыбы р. Енисей. Была выведена специальная формула для количественного расчёта соотношения «риск-польза» при потреблении человеком той или иной продукции. Формула позволяет рассчитать, опираясь на данные мониторинга, какое количество той или иной рыбы, вылавливаемой в конкретном водоёме, человек может употребить в пищу для профилактики сердечно-сосудистых заболеваний без риска получить при этом токсичную дозу тяжёлых металлов или иных опасных веществ (Gladyshev et al., 2009b).

Оптимальные порции рыбы и её кулинарная обработка

Как убедительно доказано современной медицинской наукой, употребление в пищу рыбы, содержащей достаточное количество ЭПК и ДГК, является для большинства людей необходимым условием нормального функционирования кровеносной и нервной систем. Содержание ПНЖК во многих видах рыб хорошо известно (табл. 2). Следует отметить, что наибольшей пищевой ценностью в отношении содержания ЭПК и ДГК обладают морские пелагические рыбы, т.е. те, которые водятся в толще поверхностных вод и их пищевые цепи основаны на продукции диатомовых и перидиниевых водорослей, синтезирующих большое количество длинноцепочечных омега-3 ПНЖК, а также на планктонных копеподах, способных накапливать в своей биомассе ПНЖК микроводорослей. Такими рыбами являются сельдь, сардина, мойва, питающиеся зоопланктоном (копеподами), и крупные лососевые (сёмга, горбуша, нерка), питающиеся мелкой пелагической рыбой. Морские придонные рыбы (например, камбала), как и почти все пресноводные рыбы, содержат относительно мало ПНЖК. Некоторые исследователи полагают, что пресноводная рыба вообще не может служить значимым источником ЭПК и ДГК для питания человека (Philibert et al., . Действительно, рыба, вылавливаемая в африканских озёрах, таких как Виктория, а именно тиляпия, нильский окунь, викторианский сомик, содержит чрезвычайно мало ПНЖК (табл. 2), и её потребление в пищу не может обеспечить рекомендованные суточные дозы ЭПК и ДГК (Kwetegyeka et al.,

Тем не менее представления о малой питательной ценности всех пресноводных рыб (Philibert et al., 2006) во многом основаны на недостаточной изученности содержания ПНЖК в видах, населяющих континентальные водоемы. В большинстве исследований до сих пор применяется косвенный метод оценки содержания ПНЖК: их количество выражается в процентах от общей суммы жирных кислот, а концентрации в единице массы продукта остаются неизвестными. Для того чтобы оценить содержание ЭПК + ДГК не в относительных (проценты), а в абсолютных единицах (мг ПНЖК / г массы рыбы), необходимо при хроматографических анализах добавлять так называемый внутренний стандарт. Однако внутренний стандарт использует лишь относительно небольшое число лабораторий. Более того, чтобы при анализах достоверно отличить ЭПК и особенно ДГК от других кислот, не представляющих уникальной физиолого-биохимической ценности, следует использовать масс-спектрометрический детектор. Но на практике данный детектор применяют весьма редко. Поэтому для уточнения данных о пищевой ценности пресноводных рыб необходимо провести широкомасштабные исследования с использованием внутреннего стандарта и масс-спектрометрии. Можно с уверенностью предположить, что сиговые рыбы, относящиеся к отряду Лососеобразных и питающиеся планктонными копеподами, такие как омуль, пелядь, ряпушка, будут иметь весьма высокое содержание ЭПК и ДГК.