Смекни!
smekni.com

Синтез конечного автомата для устройства управления ЭВМ (стр. 1 из 3)

Министерство образования Российской Федерации

Российский химико-технологический университет

им. Д.И. Менделеева

Новомосковский институт

Синтез конечного автомата для устройства управления ЭВМ

Методические указания

Под редакцией к. т. н., доцента В.И. Воробьева

Новомосковск 2007


УДК 681.322

ББК 32.973

С 387

Рецензенты:

кандидат технических наук, доцент кафедры "Электротехника", НИ РХТУ им. Д.И. Менделеева Е.Б. Колесников,

доцент, кандидат технических наук, доцент кафедры "Метрология и системы управления качеством", НИ РХТУ им.Д.И. Менделеева Ю.И. Азима.

Составитель: Прохоров B. C.

С 387 Синтез конечного автомата для устройства управления ЭВМ: Методические указания / Под редакцией В.И. Воробьева; РХТУ им.Д.И. Менделеева, Новомосковский ин-т; Сост.: B. C. Прохоров. – Новомосковск, НИ РХТУ им Д.И. Менделеева, 2007. - 20 с.

Предложено индивидуальное задание по синтезу конечного автомата для устройства управления ЭВМ для студентов специальности "Автоматизированные системы обработки информации и управления" по курсу "Схемотехника". Рассмотрен порядок и особенности синтеза этого автомата.

Содержание

Введение. 4

1. Порядок синтеза конечного автомата для устройства управления ЭВМ 5

2. Индивидуальное задание. 20

Библиографический список. 21

Введение

Устройство управления и синхронизации является наиболее сложным в структуре микропроцессора. Оно влияет на все процессы и управляет их протеканием. Каждая команда программы может быть разделена на этапы извлечения и выполнения. Каждый из них в свою очередь может быть разделен на элементарные микропрограммы. Микропрограммы каждой команды находятся в секции декодирования и выполняются блоком управления и синхронизации.

Управляющий автомат генерирует управляющие сигналы выборки команд из памяти и формирования в счетчике команд адреса следующей команды. Затем управляющий автомат дешифрирует код операции в команде и генерирует соответствующую коду операции серию управляющих сигналов, обеспечивающую реализацию в микропроцессоре заданной операции.

Выполнение индивидуального задания позволит понять суть процессов, протекающих в устройстве управления, и самостоятельно провести анализ и синтез несложных узлов и блоков ЭВМ.

1. Порядок синтеза конечного автомата для устройства управления ЭВМ

Обобщенная структурная схема конечного автомата КА (рис.1) содержит запоминающее устройство ЗУ (память на

триггерах Т1-Тn) и два комбинационных устройства КУ для формирования сигналов q1, q2,...,qn управления триггерами (КУ1) и для формирования требуемых выходных сигналов y1, y2,...,yk (КУ2).

Рис.1 Обобщенная структурная схема КА

КА работает циклами, заканчивая их всякий раз возвращением в исходное состояние.

По сигналу с ДШ команд схема запуска формирует входной сигнал x, который принимает только два значения: x1=0 (пауза в работе КА) и x2=1 (запуск и работа КА).

В ходе выполнения цикла КА в заданные моменты времени t1, t2, t3,... проходит через определенную последовательность внутренних состояний a(t) =al (l=0, 1,..., S), сменяющих друг друга при поступлении очередного тактового импульса Ф. При этом каждый цикл функционирования КА начинается в момент t поступления на его вход сигнала запуска x(t) =1.

Часть этих состояний (и тактов), пребывание в которых сопровождается выдачей импульса на какой-либо выход y1, y2,..., y16, можно назвать активными, а остальные, обеспечивающие заданные паузы между выдачами импульсов, - пассивными.

В качестве примера рассмотрим задачу синтеза КА с 1 входом и 16 выходами, который после запуска выдает импульс:

через (j+1) =(1+1) =2 тактовых интервалов - на выход с

номером (i+1) =(1+1) =2;

2) через (i+1) =(1+1) =2 тактов - на выход с номером

(j+1) =(1+1) =2;

3) через (i+j+9) =(1+1+9) =11 тактов - на выходы с номерами (j+4) =(1+4) =5 и (i+6) =(1+6) =7 и формирует сигнал “сброс” W=1, необходимый для возвращения КА в исходное состояние.

Здесь i=1, j=1 - предпоследняя и последняя цифры в номере зачетной книжки.

В состав КА входит генератор тактовой частоты. Он предназначен для синхронизации (т.е. согласования во времени) работы компонентов КА. Генератор формирует периодическую последовательность импульсов Ф с заданной частотой.

Тактовый интервал равен периоду периодической последовательности импульсов Ф.

В соответствии с заданием можно получить временную диаграмму работы КА (рис.2). Задание рекомендуется выполнить в следующем порядке:

1) по последним цифрам i и j номера зачетной книжки рассчитывают общее число состояний (S+1) КА, определяют необходимое количество триггеров n, активные состояния (такты) автомата, номера активных выходов;

2) строят граф, который задает алгоритм функционирования КА; составляют таблицы состояний и выходных сигналов КА, а по ним составляют таблицы истинности для сигналов на активных выходах и синтезируют функциональную схему КУ1, КУ2 в логическом базисе, заданном табл.1.


Таблица 1

Базис для синтезируемой схемы

Последняя цифра номера зачетной книжки четная нечетная
Базис или-не и, или, не

3) В соответствии с ГОСТ 2.743-82 “Обозначения условные графические в схемах. Элементы цифровой техники” вычерчивают полную принципиальную электрическую схему КА, включая схему запуска, цепи возврата в исходное состояние (цепи “сброса”). ИМС выбирают из табл.2.

Таблица 2

Рекомендуемый перечень микросхем

Условное обозначение ИМС Состав и функциональное назначение ИМС Тип логики
К155ЛЕ1 4x2 ИЛИ-НЕ ТТЛ
К155ЛН1 6x НЕ ТТЛ
К155ЛИ1 4x2 И ТТЛ
К155ЛЕ4 3x3 ИЛИ-НЕ ТТЛ
Продолжение табл.2
К155ЛЛ1 4x2 ИЛИ ТТЛ
К155ТВ1 JK-триггер с элементом 3Н на входе ТТЛ
К555ЛЕ1 4x2 ИЛИ-НЕ ТТЛШ
К555ЛН1 6x НЕ ТТЛШ
К555ЛИ1 4x2 И ТТЛШ
К555ЛИ3 3x3 И ТТЛШ
К555ЛЕ4 3x3 ИЛИ-НЕ ТТЛШ
К555ТВ6 Два JK-триггера со сбросом ТТЛШ
К531ЛЕ1П 4x2 ИЛИ-НЕ ТТЛШ
К531ЛН1П 6-НЕ ТТЛШ
К531ЛИ3П 3x3 И ТТЛШ
К531ТВ9П JK-триггер с предварительной установкой ТТЛШ
К531ТВ11П JK-триггер с установкой единицы и синхронизацией ТТЛШ

Рис. 2. Временная диаграмма работы КА

Из временной диаграммы видно, что активными тактами в рабочем цикле КА будут такты с номерами 2 и 11; активными выходами - выходы с номерами 2, 5,

7. Каждый цикл функционирования КА начинается в момент поступления на его вход сигнала запуска x(t) =1. При поступлении очередного тактового импульса Ф, максимальное число которых в цикле КА равно максимальному числу рабочих тактов R=i+j+9=1+1+9=11.

КА проходит ряд сменяющих друг друга состояний a(t) =al (l=0, 1,..., S). Число рабочих состояний равно S, а общее число состояний КА, включая исходное a0, равно S+1 и связано с максимальным числом рабочих тактов R соотношением SR.

Выполнение этого условия обеспечивает возможность выдачи выходного импульса на любом такте цикла.

Минимально необходимое количество триггеров определяется из соотношения nlog2(S+1).

Для разрабатываемого КА минимальное количество триггеров n=4, так как 24>11.

Для определения активных состояний следует задать определенный порядок их чередования в рабочем цикле КА, т.е. функцию переходов. Целесообразно принять алгоритм функционирования КА с функцией переходов, обеспечивающей естественный порядок смены состояний (рис.3). В этом случае КУ1 и память синтезируемого КА превращаются в суммирующий двоичный счетчик с параллельным переносом и коэффициентом пересчета Ксч=i+j+9=1+1+9=11, а КУ2 - в дешифратор состояний.

Рис.3. Алгоритм функционирования КА, заданный с помощью графа

Выходной сигнал КА может принимать значение произвольного 16-разрядного двоичного числа. Выходные сигналы КА могут быть описаны табл.3.

Таблица 3

Таблица выходных сигналов КА

Значения yl Уровень сигнала на выходе Vl (l=0, 1,..., S)
выходного активном пассивном
сигнала y(tl) V2 V5 V7 Остальные (l=2,5,7)
y0 0 0 0 0...0
y2 1 0 0 0...0
y5 0 1 0 0...0
y7 0 0 1 0...0
Все остальные 0 0 0 0...0

Каждое состояние КА отождествляется с записанным в триггеры n-разрядным двоичным числом (табл.4).

Таблица 4

Таблица состояний КА

Сигналы Qk(t) на прямых выходах триггеров T4, T3, T2, T1
Q4(t) Q3(t) Q2(t) Q1(t)
a0 0 0 0 0
a1 0 0 0 1
a2 0 0 1 0
a3 0 0 1 1
a4 0 1 0 0
a5 0 1 0 1
a6 0 1 1 0
a7 0 1 1 1
a8 1 0 0 0
a9 1 0 0 1
a10 1 0 1 0
a11 1 0 1 1
a12 1 1 0 0
a13 1 1 0 1
a14 1 1 1 0
a15 1 1 1 1

Для КА с естественной сменой состояний в порядке возрастания их номеров активными оказываются состояния а2, а11 (на втором и одиннадцатом тактах).

Для синтеза КУ1 и КУ2 следует задать таблично функцию переходов (табл.5) и функцию выходов (табл.6).