Из приведенных выше расчетов и графической их иллюстрации следует, что если цена на радиоприемники первой модели станет меньше 30 $/шт, то наиболее выгодным будет производство радиоприемников в точке C (см. рис.4.5). При этом производительность первой технологической линии будет использоваться не в полном объеме, что приведет к недефицитности данного ресурса (2), а дефицитными будут ресурсы (1) и (3).
Проведем те же самые исследования для радиоприемников второй модели. Для этого зафиксируем значение
Тогда из равенства
На рис 4.6 видно, что значение c2 можно уменьшать до нуля, так как прямая L(x) при c1 = 40 и
Аналогично делаем вывод, что если цена на радиоприемники второй модели станет выше 26,67 $/шт, то наиболее выгодным будет производство радиоприемников в точке C.
С экономической точки зрения производство радиоприемников в точке С означает, что предприятию станет выгоднее изготовлять радиоприемники второй модели, используя на полную мощность производительность второй технологической линии.
ЗАКЛЮЧЕНИЕ.
В ходе работы над курсовым проектом была рассмотрена задача линейного программирования о производстве радиоприемников. Для решения задачи использовался графический метод. Получены следующие результаты:
Оптимальная прибыль от реализации продукции достигается при следующем суточном производстве радиоприемников: 60 шт радиоприемников первой модели и 5 шт радиоприемников второй модели. При этом прибыль от реализации составит 2500$ в сутки.
Рассмотрев три задачи анализа полученного решения на чувствительность к принятой модели, мы можем ответить на следующие вопросы:
1. Определите предел увеличения производительности первой линии, превышение которого уже не будет улучшать значения целевой функции.
- предел увеличения производительности первой линии равен 63 радиоприемника в сутки. Дальнейшее увеличение производительности не имеет смысла, т.к. значение ЦФ не улучшится.
2. Определите предел уменьшения производительности второй линии, при котором полученное оптимальное решение останется неизменным.
- предельный уровень, до которого может уменьшиться производительность второй технологической линии, и при котором не изменится оптимальность полученного ранее решения, равен 5 радиоприемников в сутки.
3. Определите предел увеличения суточного запаса элементов электронных схем, при превышении которого улучшить значение целевой функции оказывается невозможным.
- предел увеличения суточного запаса элементов электронных схем равен 1700 шт в сутки. Дальнейшее увеличение нецелесообразно, потому что это не изменит ОДР и не приведет к другому оптимальному решению.
4. Определить дефицитный ресурс, который имеет наибольший приоритет при возможности увеличения запасов ресурсов.
- т.к. увеличение производительности первой технологической линии на 1 шт принесет 6,7 $/сутки (в отличии от 2$/сутки от увеличения суточного запаса элементов электронных схем), то именно данный ресурс (2) имеет приоритет.
5. Определите интервал изменения прибыли от продажи радиоприемника первой модели, в котором оптимальное решение остается неизменным.
- интервал изменения прибыли от продажи радиоприемника первой модели, в котором оптимальное решение остается неизменным, определяется неравенством $/шт.
6. Определите аналогичный интервал для приемника второй модели.
- интервал изменения прибыли от продажи радиоприемника второй модели, в котором оптимальное решение остается неизменным, определяется неравенством $/шт.
Решение данной задачи помогло более глубоко и основательно изучить и укрепить на практике все тонкости и моменты графического метода решения задач линейного программирования, а так же разобраться с основами анализа на чувствительность модели к полученному оптимальному решению.
Список литературы
1. АстафуровВ.Г., Колодникова Н. - Компьютерное учебное пособие, раздел “Анализ на чувствительность с помощью двойственной задачи”, Томск-2002.
2. Алесинская Т.В. - Задачи по исследованию операций с решениями.
3. Смородинский С.С., Батин Н.В. - Оптимизация решений на основе методов и моделей математического программирования: Учебное пособие.
4. Кононов В.А. - Исследование операций. Для продвинутых математиков.