Ограничение (3) является несвязывающим, т.к. не проходит через оптимальную точку D (см. рис.4.3). Соответствующий ему ресурс (производительность второй технологической линии) является недефицитным. С экономической точки зрения это означает, что в данный момент уровень производительности второй технологической линии непосредственно не определяет объемы производства. Поэтому некоторое его колебание может никак не повлиять на оптимальный режим производства в точке D.
Например, увеличение (уменьшение) суточного объема второй технологической линии будет соответствовать перемещению прямой ограничения
Рис.4.3. Анализ уменьшения производительности второй технологической линии
Правило №3
Чтобы определить максимальное уменьшение запаса недефицитного ресурса, не меняющее оптимальное решение,
необходимо передвигать соответствующую прямую до пересечения с оптимальной точкой.
Правило №4
Чтобы численно определить минимальную величину запаса недефицитного ресурса, не меняющую оптимальное решение,
необходимо подставить координаты оптимальной точки в левую часть соответствующего ограничения.
Чтобы выяснить, до каких пределов уменьшение производительности второй технологической линии не повлияет на производство в точке D, используем правило №4 Подставляем в левую часть ограничения (3) координаты точки D, получаем
Делаем вывод: предельный уровень, до которого может уменьшиться объем второй технологической линии, и при котором не изменится оптимальность полученного ранее решения, равен 5 шт радиоприемников в сутки.
Результаты решения первой задачи анализа оптимального решения на чувствительность представлены в табл.4.1.
Таблица 4.1
№ | Тип ресурса | Max изменение ресурса, | Max изменение дохода, | Ценность дополнительной единицы ресурса |
(1) | Дефицитный | 1700-950=+750 | 4000-2500=+1500 | |
(2) | Дефицитный | 63-60=+3 | 2520-2500=+20 | |
(3) | Недефицитный | 5-80=-75 | 2500-2500=0 | |
Анализ табл.4.1 показывает, что к улучшению оптимального решения, т.е. к увеличению суточного дохода приводит увеличение дефицитных ресурсов. Для определения выгодности увеличения этих ресурсов используют понятие ценности дополнительной единицы i-го ресурса
где
Например, из табл.4.1 следует, что увеличение суточного запаса элементов электронных схем (ограничение (1)) на 1 шт позволит получить дополнительный доход, равный 2 $/сутки, в то время как увеличение производительности первой технологической линии (ограничение (2)) на 1 шт принесет 6,7 $/сутки. Недефицитные ресурсы имеют нулевые ценности, поскольку изменение этих ресурсов не приводит к увеличению дохода.
Вывод: дополнительные вложения в первую очередь необходимо направлять на увеличение суточного объема первой технологической линии, а лишь потом на увеличение суточного запаса элементов электронных схем. Изменять недефицитные ресурсы нет необходимости.
4.2.3. Третья задача анализа на чувствительность (в каких пределах допустимо изменение коэффициентов целевой функции)
Изменение цен на продукцию, т.е. изменение коэффициентов ЦФ, представляется на графике вращением целевой прямой вокруг оптимальной точки. Так, при увеличении коэффициента ЦФ
При таких поворотах точка D будет оставаться оптимальной до тех пор, пока наклон целевой прямой не выйдет за пределы, определяемые наклонами прямых ограничений (1) и (2). Так, например, если наклон целевой прямой совпадет с наклоном прямой (1), то оптимальным решением будут точки отрезка СD. При совпадении c прямой (2) оптимальным решением будут точки отрезка DE.
Рис.3.4. Анализ изменения цен
Наличие альтернативных оптимумов свидетельствует о том, что одно и то же оптимальное значение может достигаться при различных значениях переменных. Если целевая прямая выйдет за пределы наклона (1), то оптимальной точкой станет точка C. Допустим, что цена на радиоприемники второй модели не меняется, т.е. зафиксируем значение целевого коэффициента
Совпадение в процессе вращения целевой прямой с прямой ограничения означает, что углы их наклона относительно горизонтальной оси сравнялись, а значит, стали равны тангенсы углов наклона этих прямых.
Правило №5
Чтобы определить границы допустимого диапазона изменения коэффициента ЦФ, например
необходимо приравнять тангенс угла наклона целевой прямой
Рис.4.5. Определение
Рис.4.6. Определение
Определим, насколько максимально может снизиться цена на радиоприемники первой модели, не изменяя оптимальную точку D. Для этого применим правило №5.
Тангенсы угла наклона для прямых L(x) и (1) соответственно равны:
Тогда из равенства
Теперь попробуем определить, насколько максимально может увеличиться цена на радиоприемники первой модели, чтобы не изменилась оптимальная точка D.
На рис 4.6 видно, что значение c1 можно увеличивать беспредельно, так как прямая L(x) при c2 = 20 и