Для обобщения вывода на
Замкнутой называется система тел, для которой результирующая внешних сил равна нулю.
Пусть
Обозначим внутренние силы, действующие на точку массой
Запишем в принятых обозначениях второй закон динамики для каждой точки в отдельности:
Число уравнений равно числу
и результирующая этих сил равна нулю. Следовательно, во всей замкнутой системе изменение количества движения равно нулю:
или
полное количество движения замкнутой системы – величина постоянная во все время движения (закон сохранения количества движения).
Закон сохранения количества движения – один из фундаментальных законов физики, справедливый как для систем макроскопических тел, так и для систем, образованных микроскопическими телами: молекулами, атомами и т. п.
Если на точки системы действуют внешние силы, то количество движения, которым обладает система, изменяется.
Напишем уравнения (1.9), включив в них результирующие внешних сил
Сложив левые и правые части уравнений, мы получим: слева – полный вектор изменения количества движения системы; справа – импульс результирующей внешних сил:
или, обозначая результирующую внешних сил
т. е.
изменение полного количества движения системы тел равно импульсу результирующей внешних сил.
Равенство (1.13) может быть записано в другом виде:
т. е.
производная по времени от общего количества движения системы точек равна результирующей внешних сил, действующих на точки системы.
Проецируя векторы количества движения системы и внешних сил на три взаимно перпендикулярные оси, вместо векторного равенства (6.14) получим три скалярных уравнения вида:
Если вдоль какой-либо оси, скажем
Мы рассмотрели передачу механического движения от одних тел к другим без перехода его в другие формы движения материи.
Величина «mv оказывается здесь мерой просто перенесенного, т. е. продолжающегося, движения… ».
Применение закона изменения количества движения к задаче о движении системы тел позволяет исключить из рассмотрения все внутренние силы, что упрощает теоретическое исследования и решения практических задач.
1.Пусть на покоящейся тележке неподвижно стоит человек (рис. 2. а). Количество движения системы человек – тележка равно нулю. Замкнута ли эта система? На нее действуют внешние силы – сила тяжести и сила трения между колесами тележки и полом. Вообще говоря, система не замкнута. Однако, поставив тележку на рельсы и соответствующим образом обработав поверхность рельсов и колес, т. е. значительно уменьшив трение между ними, можно силой трения пренебречь.
Сила тяжести, направления вертикально вниз, уравновешивается реакцией деформированных рельсов, и результирующая этих сил не может сообщить системе горизонтального ускорения, т. е. не может изменить скорость, а следовательно, и количество движения системы. Таким образом, мы можем с известной степенью приближения считать данную систему замкнутой.
Положим теперь, что человек сходит с тележки влево(рис. 2. б), имея скорость
Для нахождения скоростей
Пока человек неподвижно стоит на тележке, общее количество движения системы остается равным нулю:
Отсюда
или
Скорости, приобретенные человеком и тележкой, обратно пропорциональны их массам. Знак «минус» указывает на их противоположную направленность.
2.Если человек, двигаясь со скоростью