Смекни!
smekni.com

Программирование различных типов задач (стр. 2 из 3)

Таким образом, в процессе вставки мы "просеиваем" элемент x к началу массива, останавливаясь в случае, когда

1. Hайден элемент, меньший x или

2. Достигнуто начало последовательности.

Type
arrType = Array[1 .. n] Of Integer;

Procedure Insert(Var ar: arrType; n: Integer);
Var i, j, T: Integer;
Begin
For i := 1 To n Do Begin
T := ar[i];
j := Pred(i);
While (T < ar[j]) and (j > 0) Do Begin
ar[Succ(j)] := ar[j]; Dec(j);
End;
ar[Succ(j)] := T;
End;
End;

Сложность О(n^2)

Распределяющая сортировка - RadixSort - цифровая – поразрядная

Пусть имеем максимум по k байт в каждом ключе (хотя за элемент сортировки вполне можно принять и что-либо другое, например слово - двойной байт, или буквы, если сортируются строки). k должно быть известно заранее, до сортировки.

Разрядность данных (количество возможных значений элементов) - m - также должна быть известна заранее и постоянна. Если мы сортируем слова, то элемент сортировки - буква, m = 33. Если в самом длинном слове 10 букв, k = 10. Обычно мы будем сортировать данные по ключам из k байт, m=256.

Пусть у нас есть массив source из n элементов по одному байту в каждом.

Для примера можете выписать на листочек массив source = <7, 9, 8, 5, 4, 7, 7>, и проделать с ним все операции, имея в виду m=9.

I.Составим таблицу распределения. В ней будет m (256) значений и заполняться она будет так:

for i := 0 to Pred(255) Do distr[i]:=0;
for i := 0 to Pred(n) Do distr[source[i]] := distr[[i]] + 1;

Для нашего примера будем иметь distr = <0, 0, 0, 0, 1, 1, 0, 3, 1, 1>, то есть i-ый элемент distr[] - количество ключей со значением i.

index: array[0 .. 255] of integer;

index[0]:=0;

for i := 1 to Pred(255) Do index[i]=index[i-1]+distr[i-1];

В index[ i ] мы поместили информацию о будущем количестве символов в отсортированном массиве до символа с ключом i.

Hапример, index[8] = 5 : имеем <4, 5, 7, 7, 7, 8>.

III.А теперь заполняем новосозданный массив sorted размера n:

for i := 0 to Pred(n) Do Begin
sorted[ index[ source[i] ] ]:=source[i];

{

попутно изменяем index уже вставленных символов, чтобы

одинаковые ключи шли один за другим:

}

index[ source[i] ] := index[ source[i] ] +1;

End;

Итак, мы научились за O(n) сортировать байты. А от байтов до строк и чисел - 1 шаг. Пусть у нас в каждом числе - k байт.

Будем действовать в десятичной системе и сортировать обычные числа ( m = 10 ).

сначала они в сортируем по младшему на один беспорядке: разряду: выше: и еще раз:
523 523 523 088
153 153 235 153
088 554 153 235
554 235 554 523
235 088 088 554



Hу вот мы и отсортировали за O(k*n) шагов. Если количество возможных различных ключей ненамного превышает общее их число, то 'поразрядная сортировка' оказывается гораздо быстрее даже 'быстрой сортировки'!

Реализация алгоритма "распределяющей" сортировки:

Const
n = 8;

Type
arrType = Array[0 .. Pred(n)] Of Byte;

Const
m = 256;
a: arrType =
(44, 55, 12, 42, 94, 18, 6, 67);

Procedure RadixSort(Var source, sorted: arrType);
Type
indexType = Array[0 .. Pred(m)] Of Byte;
Var
distr, index: indexType;

i: integer;
begin
fillchar(distr, sizeof(distr), 0);
for i := 0 to Pred(n) do
inc(distr[source[i]]);

index[0] := 0;
for i := 1 to Pred(m) do
index[i] := index[Pred(i)] + distr[Pred(i)];

for i := 0 to Pred(n) do
begin
sorted[ index[source[i]] ] := source[i];
index[source[i]] := index[source[i]]+1;
end;
end;

var
b: arrType;
begin
RadixSort(a, b);
end.

Теория чисел.

Теория чисел является, возможно, самым интересным и красивым разделом математики. Доказательство Евклидом существования бесконечного количества простых чисел остается таким же четким и ясным сегодня, каким оно было более двух тысяч лет назад. Такие невинные вопросы, как существуют ли решения уравнения аn+bn=cn для целых a,b,c и n>2, часто оказывается совсем не такими невинными. Более того, это формулировка великой теоремы Ферма!

Компьютеры уже долгое время используют в исследованиях теории чисел. Проведение некоторых вычислений, связанных с теорией, для больших чисел требует значительной эффективности. К счастью, существует множество алгоритмов, которые могут помочь в этом.

Простые числа

Целое число р>1 называют простым, если оно делится только на 1 и на само себя. Говоря другими словами, если р – простое число, то равенство р=a*b для целых a≤b эквивалентно тому, что a=1 и b=p. Первые десять простых чисел: 2, 3, 5, 7,11, 13, 17, 19, 23 и 29.

Мы говорим, что число р является множителем числа х, если оно входит в его разложение на простые множители. Любое число не являющееся простым, называется составным.

Нахождение количества делителей и самих делители числа а.

Для этого будем перебирать все числа i, подходящие на роль делителя. Очевидно, что 1 <= i <= a. Чтобы ускорить работу алгоритма заметим, что если i – делитель а, то a/i – тоже делитель a, и к тому же одно из чисел i и a/i не превышает Sqrt(a) (если предположить противное, то получим a = i*(a/i) > Sqrt(a)*Sqrt(a) = a – противоречие). Поэтому достаточно перебирать числа i в пределах от 1 до Trunc(Sqrt(a)) и при нахождении, что некоторое i – делитель выдавать, что a/i – тоже делитель и увеличивать количество делителей на 2. Этот алгоритм не будет работать, когда a – точный квадрат, что легко исправляется.

Приведенные соображения реализованы в алгоритме (2):

c:= 0;

For i:= 1 to Trunc(Sqrt(a)) do

If a mod i = 0 then begin

If i*i = a then begin

c:= c+1;

WriteLn(‘Найден делитель ’, i);

end

else begin

c:= c+2;

if i=a div i then c:=c-1;

WriteLn(‘Найден делитель ‘, i);

WriteLn(‘Найден делитель ‘, a div i);

end;

end;

WriteLn(‘Количество делителей ‘, c);

Для того, чтобы проверить, является ли число простым, нужно посчитать количество его делителей, используя алгоритм 2.

Нахождение всех простых чисел, не превосходящих заданное число N.

Возможны несколько подходов к решению этой задачи:

1) Метод Эратосфена. Выпишем все числа от 2 до N. Затем, пока есть числа, которые не вычеркнуты и не обведены, делаем следующий набор операций: обводим минимальное из оставшихся чисел, вычеркиваем все числа, кратные ему. После окончания работы алгоритма все простые числа будут обведены.

Доказательство. Данный алгоритм не может вычеркнуть простое число, так как если число вычеркивается, то оно заведомо делится на какое-то другое, не равное ему. Теперь докажем по индукции, что для любого N алгоритм обводит все простые числа, не превосходящие N. База: при N = 2 утверждение верно, так как 2 будет обведено на 1-м шаге. Индуктивный переход: пусть утверждение верно при 2 <= N <= k-1. Рассмотрим N = k. Если N – составное, то у числа N есть простой делитель t, в качестве которого можно взять, например, его минимальный делитель (почему?). По индукции, на каком-то шаге число t будет обведено, на этом же шаге будет вычеркнуто N. Если же N – простое, то оно не может быть вычеркнуто, поэтому на каком-то шаге станет минимальным из оставшихся и будет обведено. Утверждение доказано.


Приведенные соображения реализованы в алгоритме:

FillChar(B, SizeOf(B), True);

For j:= 2 to N do

If B[j] then

Begin

WriteLn(j, ‘ – простое’);

i:= 2*j;

While i <= N do begin

B[i]:= False;

i:= i+j;

End;

end;

2) Будем хранить в массиве уже найденные простые числа. Рассматривая очередное число X, будем делить его на все уже полученные простые числа, не превосходящие Trunc(Sqrt(X)).

Доказательство. Корректность работы алгоритма следует из того, что, если число – составное, то оно обязательно имеет простой делитель, не превосходящий корня из этого числа.

Основная теорема алгебры.

Всякое число N представимо в виде произведения простых сомножителей, причем такое представление единственно с точностью до порядка сомножителей.

Доказательство. Для доказательства существования разложения воспользуемся индукцией по N с учетом, что любое число либо является простым, либо имеет простой делитель (проведите сами). Докажем единственность. Предположим, что N = p1p2…pk = t1t2…tl, где все сомножители – простые числа, причем p1<=…<=pk и t1<=…<=tl. С учетом соображений индукции, достаточно доказать, что p1 = t1 (почему?). Предположим противное и пусть, для определенности, p1 < t1. Так как t1, …, tl – простые, то p1 не является делителем каждого из этих чисел. Тем не менее p1 – делитель их произведения. Поэтому должны существовать числа a1, b1, …, al, bl такие, что a1b1 = t1, …, albl = tl, a1a2…ak = p1. Но, так как любое ai = 1 или ai = ti (ведь ti – простое число), то a1a2…ak либо равно 1, либо не меньше t1, что заведомо меньше, чем p1. Противоречие.

Из доказательства теоремы следует следующий алгоритм нахождения разложения числа на простые множители:

D:= 2;

While d <= Trunc(Sqrt(N)) do begin

While N mod d = 0 do begin

WriteLn(d);

N:= N div d;

end;

If d = 2 then d:= 3

else d:= d+2;

end;

If N <> 1 then WriteLn(N);

НОД и НОК

Если число c является делителем a и b, то говорят, что число c является общим делителем чисел a и b. Число d называют наибольшим общим делителем (НОД) чисел a и b, если d – общий делитель a и b и любой общий делитель a и b является делителем d.

Если числа a и b являются делителями числа c, то говорят, что число c является общим кратным чисел a и b. Число d называют наименьшим общим кратным (НОК) чисел a и b, если d – общее кратное a и b и d – делитель любого общего кратного a и b.