Смекни!
smekni.com

Электрохимические сенсоры на основе ионофоров: современное состояние, тенденции, перспективы (стр. 1 из 4)

Электрохимические сенсоры на основе ионофоров: современное состояние, тенденции, перспективы

К. Н. Михельсон

Введение

Нейтральные и заряженные ионофоры — липофильные молекулы или ионы, способные к селективному связыванию тех или иных аналитов, являются основой для нескольких классов химических сенсоров. Это электрохимические сенсоры, прежде всего потенциометрические (ионоселективные электроды, ионоселективные полевые транзисторы), селективные кондуктометрические и вольтамперометрические сенсоры, а также сенсоры с оптическим преобразованием сигнала (оптоды). Ионоселективные электроды, в частности на основе ионофоров, входят в число сенсоров, наиболее широко применяемых на практике. Интерес исследователей к таким аналитическим устройствам не ослабевает в течение нескольких десятилетий. Как и для многих других областей науки и практики, для ионометрии характерно развитие по двум направлениям: расширение круга ионов, доступных для селективного измерения с помощью ионоселективных электродов — экстенсивное развитие и резкое расширение аналитических возможностей электродов на основе уже известных ионофоров за счет реализации новых, революционных подходов к их использованию — интенсивное развитие.

На ранней стадии развития ионометрии нередко удавалось достичь успеха, применяя уже известные селективные экстрагенты, в том числе природные соединения, выполняющие функцию селективных переносчиков ионов. Позднее был разработан большой набор ионоселективных материалов: подандов, краун- и бискраун-эфиров, каликсаренов. Селективность ионофоров этих типов в значительной мере определяется их геометрией, в частности соответствием размеров иона и полости, формируемой полярными группами ионофора, или двух молекул ионофора в случае подандов, которые обычно образуют комплексы типа IL2 (I — ион, L — ионофор). Селективность металлопорфиринов к тем или иным анионам в значительной мере обусловлена сродством аниона к атому металла в металлопорфирине.

Таким образом, быстрому экстенсивному развитию ионометрии во многом способствовали достижения в других областях химии.

В настоящее время создание новых ионофоров требует все более глубоких и разносторонних исследований, сочетающих квантовохимические и молекулярно-статистические расчеты, органический синтез новых классов соединений, а также характеризацию новых ионофоров и мембран на их основе с позиций материаловедения. С другой стороны, ионометрия, использующая электроды на основе уже известных ионофоров, находится на этапе быстрого интенсивного развития, прежде всего по двум направлениям. Во-первых, стали возможными ионометрические измерения в наномолярном и даже пикомолярном интервале концентраций ионов. Во-вторых, ионометрия постепенно выходит за рамки сугубо потенциометрического метода, открываются все новые возможности измерений с помощью ионоселективных электродов, поляризованных путем пропускания электрического тока.

Нам представляется, что характерной тенденцией последнего десятилетия было относительное сокращение вклада экстенсивного развития и возрастание роли интенсивного пути в общем прогрессе ионометрии. Итоги развития теории и практики ионоселективных электродов и оптодов на основе ионофоров, полученные к концу 1990-х годов, подведены в обзорах [1, 2]. Не столь детальное, но с более общих позиций описание состояния ионометрии как одного из многих электрохимических методов можно найти в обзорах [3—6]. Важной и специфической составляющей в общем прогрессе ионометрии, да и вообще химической сенсорики, является разработка устройств типа электронный язык: массивов химических сенсоров в сочетании с адекватным математическим обеспечением. Работы, посвященные созданию электронного языка на основе массивов различных сенсоров, в том числе с ионофорами, проанализированы в [7].

В настоящем обзоре, не претендуя на исчерпывающую степень полноты и ограничившись только собственно ионоселективными электродами и только на основе ионофоров, мы постарались охарактеризовать достижения последних лет (за редким исключением, в статье цитируются только работы, опубликованные после 2000 года). Помимо краткого описания новых Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2008, т. LII, № 2 31 электродов (экстенсивное развитие) обсуждаются новые подходы к применению уже известных электродных композиций, позволившие резко расширить области применения ионоселективных электродов (интенсивный путь). При этом мы не будем касаться конкретных аналитических задач, решаемых с помощью ионоселективных электродов.

Новые ионоселективные электроды и новые материалы в их составе В числе первых ионов, поддающихся селективному ионометрическому определению, были катионы щелочных и щелочноземельных металлов. Тем не менее поиск новых ионофоров и работа по оптимизации состава мембран для электродов с селективностью к этим катионам продолжаются. В частности, предложены электроды для определения ионов K+ на основе дибензокраун-эфиров с гидроксильными и хлорметильными группами [8]. Каликс[4, 8]арены с адамантильными заместителями в верхнем ободе и этоксикарбонилметоксильными группами в нижнем ободе макроциклов оказались полезными для создания новых Na+- и Cs+-селективных электродов [9]. Описан новый вариант NH4 +-селективного электрода с нейтральным ионофором, представляющим собой циклический депсипептид [10]. Широкие систематические исследования, проводившиеся с фосфорсодержащими ионофорами, позволили предложить новые варианты электродов для определения ионов Ca2+ и Ba2+ [11, 12]. Показана возможность регулировать селективность путем вариации содержания в мембране липофильной соли — тетра-пхлорфенилбората (ТпХФБ–). Мембраны оказались селективны к ионам Ca2+ при содержании ТпХФБ– от 50%(мол.) по отношению к нейтральному ионофору. При меньшем содержании липофильной соли мембраны проявляют селективность к ионам щелочных металлов [12]. Новый Ca2+-селективный электрод предложен также на основе изомеров бис(1, 2, 3, 6-тетрагидробензо)- краун-эфиров [13].

Есть новые достижения и в отношении селективных электродов для определения катионов тяжелых металлов, в частности Zn2+ [14], Pb2+ [15], Hg2+ [16], Tl3+ [17], Sm3+ [18]. В некоторых случаях путем оптимизации количественного состава мембран удается на основе хорошо известных ионофоров получить селективные электроды с новыми интересными свойствами, пригодные, например, для измерений в водно-органических средах, или с достаточной селективностью к неорганическим ионам (Ca2+) в присутствии липофильного иона тетрабутиламмония [19].

Систематическое исследование новых электродов, обратимых по отношению к катионам органических аминов (от первичных до четвертичных), позволило найти инкременты метиленовых и ионных групп в коэффициентах селективности, на основании которых были разработаны сенсоры для определения четвертичных аминов при их совместном присутствии [20, 21].

Среди аналитически важных анионов особое место принадлежит хлорид-иону в силу его распространенности, контроль содержания Cl– осуществляется и в практике клинико-биохимического анализа. Вместе с тем известные Cl–-электроды часто оказываются недостаточно селективными для практического применения. Поэтому результаты, полученные в работах [22—26], представляют значительный интерес. Хлоридные электроды на основе комплексов ртути, кадмия и висмута [22, 23] перспективны прежде всего для решения задач экологического контроля. Электроды с высокой селективностью к хлориду, основанные на дикетонатных комплексах европия [22—26], могут найти применение также и в клиническом анализе.

Обеспечение селективности к гидрофильным анионам, таким как сульфат и фосфаты, — трудная и до сих пор нерешенная задача. И все же определенный прогресс в этом направлении достигнут в работах [27] для ионов SO4 2– и в [28—30] для ионов H2PO4 –. Необходимо отметить, что правильная интерпретация результатов, полученных при измерениях в фосфатных, карбонатных и других электролитах, анионы которых способны присоединять или отдавать ионы водорода, требует особо тщательного выявления истинной природы потенциалопределяющего иона [31].

Разработаны ионоселективные электроды для определения I3 – [32, 33] и этилендиаминтетраацетатвисмутата [34]. Как правило, в состав мембран анионоселективных электродов вводят четвертичные аммониевые основания, играющие роль анионообменников, в том числе в мембранах на основе нейтральных и заряженных металлопорфиринов [35]. В некоторых случаях, хотя и реже, применяют другие по химической природе анионообменники, в частности липофильные катионные красители [36].

Важной областью применения ионоселективных электродов является клиническая практика — анализ биологических жидкостей на фармацевтически значимые вещества. Электрод для определения сульфадимезина описан в [37]. Оптимизированы составы мембран электродов для определения димедрола, папаверина, новокаина и лидокаина [38]. Разработан и исследован ряд ионоселективных электродов для анализа на дротаверин (спазмолитик) [39]. Предложены электроды для определения антибиотиков β-лактамовой природы [40— 42]. Разработаны два варианта электродов на витамин B6 [43]. Реакция комплексообразования продуктов гидролиза фосфолипидов с ионами бария положена в основу метода ионометрического определения фосфолипидов [44]. Для определения тригалогенацетатов (CCl3COO–, CBr3COO– и CI3COO–) в диагностических наборах разработан электрод на базе нейтрального ионофора гексил-п-трифторацетилбензоата, обычно применяемого в карбонатных электродах [45]. Электрод для контроля содержания метиленовой сини в гематологических реагентах предложен в [46].

Значительный интерес представляют работы, посвященные электродам для определения анионных [47— К. Н. Михельсон 32 51], катионных [48, 51—53] и неионогенных ПАВ [48, 51, 54—56].

Продолжаются исследования, направленные на миниатюризацию ионоселективных электродов. Для этого, как и раньше, разрабатываются конструкции без внутреннего водного раствора — твердоконтактные электроды. Стабилизация электрического потенциала таких электродов достигается посредством промежуточного слоя со смешанной электронно-ионной проводимостью, размещаемого между токоотводом (электронным проводником) и ионоселективной мембраной (ионным проводником). Промежуточным слоем обычно является электропроводящий полимер (или он входит в состав слоя). Из электропроводящих полимеров чаще всего применяют поли-3, 4-этилендиокситиофен, полианилин и полипиррол. В некоторых случаях эти полимеры могут служить также ионофорами. В частности, в работе [57] описан электрод для измерения рН с мембраной, состоящей из поливинилхлорида (изолятор) и полианилина (электропроводящий полимер, чувствительный к pH).