Смекни!
smekni.com

Модели и методы принятия решения (стр. 2 из 3)

Пересчитаем координаты центра эллипса:

,

.

На рис.3 представлено графическое решение.

Из рисунка видно, что график уравнения ограничения g1 (X) (сплошная линия) пересекается с графиком целевой функции (пунктирная линия) в точке А.

В точке А с координатами (5,2222; 6,8889) имеется минимум целевой функции:

j (X) = 3х12 + 2х1 +2х22 + 22х2 - 2х1х2 = 3 * 5,22222 + 2 * 5,2222 + 2 * 6,88892 + 22 * 6,8889 - 2 * 5,2222 * 6,8889 = 266,78.

На рис.3 представлена также целевая функция с большим значением:

j (X) = 350.

Центр эллипсов обозначен точкой N (-2,6; -6,8).

Ответ:

Имеется одна точка экстремума - точка минимума (5,2222; 6,8889), при этом целевая функция равна:

j (X) = 266,78.

Рис.3. Графическое решение

Задача 3

Решить на основе условий Куна-Таккера.

Решение проиллюстрировать графически.

extrj (X) = (x1 - 4) 2 + (x2 - 3) 2

при

3x1 - 2x2£ 18

x1 + 2x2£ 8

Решение:

Обозначим:

g1 (X) = 3x1 - 2x2 - 18 £0,g2 (X) = - x1 + 2x2 - 8 £ 0.

Записываем функцию Лагранжа:

L (X, S, l) = j (X) - l1 (g1 (X) + S12) - l2 (g2 (X) + S22)

L (X, S, l) = (x1 - 4) 2 + (x2 - 3) 2 - l1 (3x1 - 2x2 - 18 + S12) - l2 (- x1 + 2x2 - 8 + S22)

Отсюда получаем необходимые и достаточные условия экстремума (условия Куна-Таккера) в виде системы уравнений:

,

,

,

,

,

.

Принимаем (из третьего и четвёртого уравнений системы):

.

Из первого и второго уравнений системы находим:

®
,

®
,

из пятого уравнения системы:

®
,

из шестого уравнения системы:

®
.

Таким образом, нашли первую точку:

.

Принимаем (из третьего и четвёртого уравнений системы):

.

Из первого и второго уравнений системы находим:

®
,

®
,

подставляем в пятое уравнение системы:

®
®
.

определяем координаты точки экстремума:

,

,

из шестого уравнения системы:

®
.

Таким образом, нашли вторую точку:

.

Принимаем (из третьего и четвёртого уравнений системы):

.

Из шестого уравнения системы находим:

®
.

Подставляем полученное значение в первое и второе уравнения системы:

®
,

®
®
®

,

.

Подставляем также полученные значения в пятое уравнение системы:

®

.

Таким образом, нашли третью точку:

.

В результате решения системы получаем векторы:

.

В точке

имеем глобальный минимум целевой функции:

j (X) = (x1 - 4) 2 + (x2 - 3) 2 = (4- 4) 2 + (3- 3) 2 = 0.

В точке

имеем седловую точку целевой функции:

j (X) = (x1 - 4) 2 + (x2 - 3) 2 = (6,7692- 4) 2 + (1,1538 - 3) 2 = 11,077.

В точке

имеем седловую точку целевой функции:

j (X) = (x1 - 4) 2 + (x2 - 3) 2 = (2,8 - 4) 2 + (5,4 - 3) 2 = 7,2.

Для графической иллюстрации решения строим графики уравнений ограничений:

g1 (X) = 3x1 - 2x2 - 18 £ 0®

,

g2 (X) = - x1 + 2x2 - 8 £ 0®

сплошные линии на рис.4 (графики прямых).

Также строим графики целевой функции для седловых точек (проходящих через точки А и В)

j (X) = (x1 - 4) 2 + (x2 - 3) 2 = 11,077®

,

j (X) = (x1 - 4) 2 + (x2 - 3) 2 = 7,2®

,

и минимума (проходящий через точку С) - центр окружности:

j (X) = (x1 - 4) 2 + (x2 - 3) 2 = 0®

пунктирные линии на рис.4 (графики окружностей с центром в точке

).

Из графика также видно, что глобального максимума целевой функции достичь невозможно!

Рис.4. Графическое решение


Ответ:

В точке С

имеем глобальный минимум целевой функции:

j (X) = 0.

В точке В

имеем седловую точку целевой функции:

j (X) = 11,077.

В точке А

имеем седловую точку целевой функции:

j (X) = 7,2.

Глобального максимума целевой функции достичь невозможно.

Задача 4

Получить выражение расширенной целевой функции (РЦФ) и составить блок-схему алгоритма численного решения задачи методом штрафных функций в сочетании с одним из методов безусловной минимизации.

Решить задачу средствами MSExcel.

Решение проиллюстрировать графически.

maxj (X) = - 2x1 + 8x2 - x12 - x22 (11)

при

x1 + 2x2£ 12

x1 + x2³- 8

X³ 0

Решение:

Обозначим ограничения:

,

.

Расширенная целевая функция образуется суммой целевой функции

и штрафной функции
:

.