Смекни!
smekni.com

Мова програмування Assembler (стр. 13 из 21)

Команди переходу для умови дорівнює чи нуль (JE/JZ) і не дорівнює чи не нуль (JNE/JNZ) присутні в обох списках для беззнакових і знакових даних. Стан дорівнює/нульвідбувається поза залежністю від наявності знака.

Специальныеарифметическиепроверки

Ще одна команда умовного переходу перевіряє чи дорівнює вміст регістра CX нулю. Ця команда необов'язковоповинна pасполагаться безпосередньо за командою арифметики чи порівняння. Одним з місць для команди JCXZ може бути початок циклу, де вона перевіряє чи містить регістр CX ненульове значення. Не поспішаєте поки заучувати ці команди напам'ять. Запам'ятаєте тільки, що для беззнакових даних є переходи по складаючисьниям дорівнює, чи вище нижче, а для беззнакових - дорівнює,чи більше менше. Переходи по перевірках прапорів переносу,переповнення і паритету мають особливе призначення. Асемблертранслює мнемонічні коди в об'єктний код незалежно від того, яку з двох команд ви застосували. Однак, команди JAE і JGEбудучи явно однаковими, перевіряють різні прапори.

3. Циклічні конструкції. Використання регістру CX для організації лічильного циклу

Але більш ймовірно підпрограма повинна виконувати визначене число циклів. Команда LOOP, що служить для цієї мети, використовує початкове значення в регістрі CX. Укожнім циклі команда LOOP автоматично зменшує вміст регістра CX на 1. Поки значення в CX не дорівнює нулю, керування передається за адресою,зазначеному в операнде, іякщо в CX буде0,керування переходить на слудующую після LOOP команду.Програма на рис. 7.2, що ілюструє використання команди LOOP, виконує дії, аналогічні прикладу на рис. 7.1 за винятком того, що після десяти циклів програма завершується. Команда MOV инициализирует регістр CX значенням 10. Оскільки команда LOOP використовує регістр CX, то в програмі для подвоєння початкового значення 1 замість регістра CX використовується DX.Команда JMP A20 замінена командою LOOP і для ефективності команда ADD AX,01 замінена командою INC AX (збільшення AX на 1). Аналогічно команді JMP, операнд команди LOOP визначає відстань від кінця команди LOOP до адреси мітки A20, которої додається до вмісту командного покажчика. Для команди LOOP ця відстань повинна бути в межах від -128 до +127 байт. Якщо операнд перевищує ці границі, то ассемблер видасть повідомлення "Relativejumpoutofrange" (перевищені границі переходу). Для перевірки команди LOOP рекомендується змінити відповідним чином програму, приведену на рис.7.1, виконати її асемблювання, компоновку і перетворення в COM-файл.Для трасування всіх десяти циклів використовуйте налагоджувач DEBUG. Коли в значення регістрі CX зменшиться до нуля, вміст регістpів AX, BX і DX буде відповідно тичина. 000B, 0042 і 0400. Для виходу з відлагоджувача введіть команду Q. Додатково існує два різновиди команди LOOP - це LOOPE (чи LOOPZ) і LOOPNE (чи LOOPNZ). Обидві команди також зменшують значення регістра CX на 1. Команда LOOPE передає керування за адресою операнда, якщо регістр CX має ненульове значення і прапор нуля встановлений (ZF=1). Команда LOOPNE передає керування за адресою операнда, якщо регістр CX має ненульове значення і прапор нуля скинутий (ZF=0).

4. Реентерні та рекурсивні підпрограми. Математичні команди

КОМАНДИ ЛОГІЧНИХ ОПЕРАЦІЙ: AND, OR, XOR, TEST, NOT

Логічні операції є важливим елементом у проектуванні мікросхем і мають багато загального в логіку програмування. Команди AND, OR, XOR і TEST - є командами логічних операцій. Ці команди використовуються для скидання й установки біт і для арифметичних операцій у коді ASCII (див.гл.13). Усі ці команди обробляють один байт або одне слово в регістрі або в пам'яті, і встановлюють прапори CF, OF, PF, SF, ZF.

AND: Якщо обоє з порівнюваних бітів рівні 1, то результат дорівнює 1; у всіх інших випадках результат - 0.

OR: Якщо хоча б один з порівнюваних бітів дорівнює 1, то результат дорівнює 1; якщо порівнювані біти рівні 0, то результат - 0.

XOR: Якщо один з порівнюваних бітів дорівнює 0, а іншої дорівнює 1, то результат дорівнює 1; якщо порівнювані біти однакові (обоє - 0 чи обоє - 1) то результат - 0.

TEST: діє як AND-встановлює прапори, але не змінює біти.

Перший операнд у логічних командах вказує на один байт або слово в регістрі або в пам'яті і є єдиним значенням, що може змінюватися після виконання команд.У наступних командах AND,OR і XOR використовуються однакові бітові значення:

AND OR XOR

0101 0101 0101

0011 0011 0011

Результат: 0001 0111 0110

Для наступних незв'язаних прикладів, припустимо, що AL містить 1100 0101, а BH містить 0101 1100:

1. AND AL,BH ;Встановлює в AL 0100 0100

2. OR BH,AL ;Встановлює в BH 1101 1101

3. XOR AL,AL ;Встановлює в AL 0000 0000

4. AND AL,00 ;Встановлює в AL 0000 0000

5. AND AL,0FH ;Встановлює в AL 0000 0101

6. OR CL,CL ;Установлює прапори SF і ZF

Приклади 3 і 4 демонструють спосіб очищення регістра. У прикладі 5 обнуляются ліві чотири біти регістра AL. Хоча команди порівняння CMP можуть бути зрозуміліше, можна застосувати команду OR для наступних цілей:

1. OR CX,CX ;Перевірка CX на нуль

JZ ;Перехід, якщо нуль

2. OR CX,CX ;Перевірка знака в CX

JS ... ;Перехід, якщо негативно

Команда TEST діє аналогічно команді AND, але встановлює тільки прапори, а операнд не змінюється. Нижче наведемо кілька прикладів:

1. TEST BL,11110000B ;Любою з лівих біт у BL

JNZ ... ; дорівнює одиниці?

2. TEST AL,00000001B ;Регістр AL містить

JNZ ... ; непарне значення?

3. TEST DX,OFFH ;Регістр DX містить

JZ ... ; нульове значення?

Ще одна логічна команда NOT встановлює обернене значення біт у чи байті в слові, у чи регістрі в пам'яті: нулі стають одиницями, а одиниці - нулями. Якщо, наприклад, pегістр AL містить 1100 0101, то команда NOT AL змінює це значення на 0011 1010. Прапори не міняються. Команда NOT не еквівалентна команді NEG, що змінює значення з позитивного на нега- тивне і навпаки, за допомогою заміни біт на протилежне значення і додатки одиниці (см."Негативні числа" у гл.1.).

КОМАНДИ ЗРУШЕННЯ І ЦИКЛІЧНОГО ЗРУШЕННЯ

Команди зрушення і циклічного зрушення, що представляють собою частина логічних можливостей комп'ютера, мають наступні властивості:

- обробляють чи байт слово;

- мають доступ до чи регістра до пам'яті;

- зрушують чи уліво вправо;

- зрушують на величину до 8 біт (для байта) і 16 біт (для слова);

- зрушують логічно (без знака) чи арифметично (з знаком).

Значення зрушення на 1 може бути закодоване як непосред cтвенный операнд, значення більше 1 повинне знаходитися в регістрі CL.

Команди зрушення

При виконанні команд зрушення прапор CF завжди містить значення останнього висунутого біта. Існують наступні команди cдвига:

SHR ;Логічний (беззнаковий) зрушення вправо

SHL ;Логічний (беззнаковий) зрушення вліво

SAR ;Арифметичне зрушення вправо

SAL ;Арифметичне зрушення вліво

Наступний фрагмент ілюструє виконання команди SHR:

MOV CL,03 ; AX:

MOV AX,10110111B ; 10110111

SHR AX,1 ; 01011011 ;Зрушення вправо на 1

SHR AX,CL ; 00001011 ;Зрушення вправо на 3

Перша команда SHR зрушує вміст регістра AX вправо на 1 біт. Висунутий у результаті один біт попадає в прапор CF, а самий лівий біт регістра AX заповнюється нулем. Друга команда зсуває вміст регістра AX ще на три біти. При цьому прапор CF послідовно приймає значення 1, 1, 0, а в три лівих біти в регістрі AX заносяться нулі. Розглянемо дію команд арифметичного вправо SAR:

MOV CL,03 ; AX:

MOV AX,10110111B ; 10110111

SAR AX,1 ; 11011011 ;Зрушення вправо на 1

SAR AX,CL ; 11111011 ;Зрушення вправо на 3

Команда SAR має важливу відмінність від команди SHR: для заповнення лівого біта використовується знаковий біт. Таким чином, позитивні і негативні величини зберігають свій знак. У приведеному прикладі знаковий біт містить одиницю. При зрушеннях уліво праві біти заповнюються нулями. Таким чином, результат команд зрушення SHL і SAL ідентичний. Зрушення вліво часто використовується для подвоєния чисел, а зрушення вправо - для розподілу на 2. Ці операції здійснюються значно швидше, ніж команди чи множення розподілу. Розподіл навпіл непарних чисел (наприклад, 5 чи 7) утворить менші значення (2 чи 3, відповідно) і встановлює прапор CF у 1. Крім того, якщо необхідно виконати зрушення на 2 біти, то використання двох команд зрушення більш эффективніше, ніж використання однієї команди з завантаженням регістра CL значенням 2. Для перевірки біта, занесеного в прапор CF використовується команда JC (перехід, якщо є перенос).

Команди циклічного зрушення

Циклічне зрушення являє собою операцію зрушення, при якому висунутий біт займає розряд, що звільнився. Існують наступні команди циклічного зрушення:

ROR ;Циклічне зрушення вправо

ROL ;Циклічне зрушення вліво

RCR ;Циклічне зрушення вправо з переносом

RCL ;Циклічне зрушення вліво з переносом

Наступна послідовність команд ілюструє операцію циклічного зрушення ROR: MOV CL,03 ; BX:

MOV BX,10110111B ; 10110111

ROR BX,1 ; 11011011 ;Зрушення вправо на 1

ROR BX,CL ; 01111011 ;Зрушення вправо на 3

Перша команда ROR при виконанні циклічного зрушення переносить правий одиничний біт регістра BX у ліву позицію, що звільнилася . Друга команда ROR переносить у такий спосіб три правих біти. У командах RCR і RCL у зрушенні бере участь прапор CF. Висуваємий з регістра біт заноситься в прапор CF, а значення CF при цьому надходить у позицію, що звільнилася. Розглянемо приклад, у якому використовуються команди циклічного і простого зрушення. Припустимо, що 32-бітове значення знахо- диться в регістрах DX:AX так, що ліві 16 біт лежать у регістрі DX, а праві - у AX. Для множення на 2 цього значення можливі cлідуючі дві команди:

SHL AX,1 ;Множення пари регістрів

RCL DX,1 ; DX:AX на 2

Тут команда SHL зсуває всі біти регістра AX вліво, причому самий лівий біт попадає в прапор CF. Потім команда RCL зсуває всі біти регістра DX вліво і у правий біт, що звільнився, заносить значення з прапора CF. Арифметичні команди будь-якого мікропроцесора залучають до себе найбільше уваги. Кожний зацікавлений у виконанні арифметичних обчислень, і саме ці команди проробляють таку роботу. Хоча їх небагато, вони виконують більшість перетворень, даних у мікропроцесорі. У реальних же умовах, арифметичні команди займають лише малу частину усіх команд, що виконуються. Команди пересилання використовують більшість принципів роботи команд мікропроцесора 8088, а при вивченні арифметичних команд необхідно розглянути деякі тонкості їх виконання.