Смекни!
smekni.com

Криптосистеми (стр. 2 из 2)

YА, YВ – відкриті ключі.

При побудуванні використовуються властивості поля.

,

де r – сеансовий ключ.

Користувач А передає користувачу В пару

. Потім користувач В обчислює:

.

Таким чином, перетворення в полі є зворотнім та однозначним.

Модель криптоаналітика заключається в тому, що необхідно знайти ХВ. Реалізуючи рівняння відносно ХВ одержимо секретний ключ. Стійкість проти атак в полі визначається складністю розв’язання рівняння

.

Сутність асиметричних криптоперетворень в групі точок еліптичних кривих

За 20 років розроблено нові математичні апарати, які дозволяють ефективно розв’язувати рівняння, що реалізовані в полях та кільцях. В 90-х роках було запропоновано використовувати криптоперетворення, що базуються на перетвореннях в групі точок еліптичних кривих над полями GF(p), GF(2m), GF(pm).

Для випадку простого поля:

елементом перетворення є точка на еліптичній кривій, тобто

,що обчислюється за модулем р. Формується ключова пара:

, де
.

,

де G – базова точка на еліптичній кривій порядку

QA – відкритий ключ, точка на еліптичній кривій з координатами (ха, уа).

Задача криптоаналітика знайти таємний ключ dA. Складність розв’язку цього рівняння набагато вище, ніж в полі. В полі – субекспоненційна складність, а в групі точок еліптичних кривих – експоненційна складність.

3. СИМЕТРИЧНІ КРИПТОПЕРЕТВОРЕННЯ

Застосовувані на практиці криптоперетворення розділяють на 2 класи по стійкості:

1. обчислювально стійкі.

2. ймовірно стійкі (доказово стійкі).

Основним показником, по якому оцінюються такого роду системи є безпечний час:


Nвар – кількість команд, операцій для рішення задачі криптоаналізу.

g - продуктивність криптосистеми, вар/сек.

k – коефіцієнт кількості сек/рік

Рр – імовірність рішення задачі.

ВР і ДС повинні задовольняти. До доказово стійких перетворень відносять перетворення з відкритими ключами, з відкритим поширенням ключів і т.д. У цих системах задача криптоаналізу полягає в рішенні якоїсь іншої математичної задачі. Обчислювально стійкі системи реалізуються за рахунок застосування симетричних криптоперетворень.

У симетричних криптосистемах ключ зашифрування або збігається з ключем розшифрування, або обчислюється один з іншого з поліноміальною складністю.

Поліноміальна складність

Нехай n – розмірність вхідних даних, що підлягають криптоперетворенню і нехай t(n) є складність перетворення цих даних у сек. тактах, командах. Складність називають поліноміальної, якщо вона представлена:


- набір констант.

- експонентна складність

В даний час як функцію f реалізуючої криптоперетворення використовуються афінні шифри.

Афінне перетворення – перетворення, яке можна одержати комбінуючи рухи, дзеркальні відображення і гомотепію в напрямку координатних осей.

Гомотепія – перетворення простору чи площини щодо точки по направляючим осях з коефіцієнтами.

До афінних шифрів відносяться шифри зрушення, лінійні афінні шифри.

У потокових криптоперетвореннях об'єктами взаємодії є символи повідомлення Мi і символи ключа Kj, причому з використанням символів ключа формується Гi.

Мi , Kj ,


Рис 1

Розшифрування:


При обчисленні необхідно строго синхронізувати по i, тобто: Гi при розшифруванні і зашифруванні та сама.

М – ічне шифрування (по mod).

Приклад:

Двійкове гамування

Гi повинна породжуватися псевдовипадковим чи випадковим процесом. Реалізація процесу повинна залежати від вихідного ключа.

Правильне розшифрування виконується за умови, що відправник і одержувач використовують той самий ключ, вони можуть сформувати однакові гами. Необхідно забезпечити синхронізацію по i.

Симетричні криптоперетворення, якщо або:

,

або можуть бути обчислені один при знанні іншого не нижче ніж з поліноміальною складністю.

Симетричні шифри діляться на блокові та потокові шифри.

Блокові симетричні шифри використовуються в чотирьох режимах роботи:

1)блокового шифрування;

2)потокового шифрування;

3)потокового шифрування зі зворотнім зв’язком по криптограмі;

4)вироблення імітоприкладки;

5)вироблення псевдопослідовностей (ключів).

Побудування таких шифрів здійснюється на використані декількох елементарних табличних або криптографічних перетворень. До них відносяться:

- афінні перетворення;

- перетворення типу підстановка (перестановка) символів;

- гамування (складання з ключем);

- аналітичної підстановки (заміни).

Основні криптоперетворення симетричного типу

Афінний шифр

Твердження 1

Нехай

є мова за алфавітом
і алфавіт мови співпадає з алфавітом криптограми. Кожному символу поставлене
число. Тоді існує афінний шифр з ключем
, елементами якого є:

,

якщо найменший спільний дільник

.

В афінному шифрі зашифровування здійснюється таким чином:

,

а розшифровування:

,

де

,

.

Цей шифр є однозначно зворотнім.

Лінійний шифр

Твердження 2

Якщо в афінному шифрі

, то існує лінійний взаємозворотній шифр, у якому зашифровування здійснюється як:

,

а розшифровування:

.

Твердження 3

Якщо в афінному шифрі

, то існує адитивний однозначно зворотній шифр правилом шифрування:

,

.

доведення здійснюється з урахуванням афінного шифру

.

У вказаних шифрах вимога не виконується. Симетрія шифру заключається в тому, що ключі поліноміально легко зв’язані і один може бути легко визначени при знанні іншого.

Шифр „Підстановка в полі”

Розв’язок можна звести до розв’язку діафантового рівняння:

.

Таким чином:

.

.

Нехай

, таким чином поліном
:

.

Як правило, таке перетворення використовується як табличне. Воно здійснюється без ключа, ключем може бути тільки примітивний поліном.