Смекни!
smekni.com

Кодеры речи (стр. 1 из 16)

Глава1 Кодеры формы.

Кодеры формы характеризуются способностью сохранять основную форму речевого сигнала. Кодеры формы не являются специфичными для речи в том смысле, что они с успе­хом работают с любой формой входного сигнала, и их применение ограничено только пределами амплитуды и шириной полосы. Сохраняя огибающую формы сигнала, подобные кодеры работают по принципу выборка-выборка, и их характеристики эффективно измеряются отношением сигнал/шум (ОСШ), так как квантование является основным источником искажений формы выходного сигнала.

ИКМ — первый мировой стандарт кодирования речи со скоростью 64 кбит/с с логарифмическим сжатием (по μ-закону для Северной Америки и А-закону для Европы). ИКМ-кодер является кодером формы и все еще широко используется в цифровых системах. ИКМ со скоростью 64 кбит/с в основном используется как предварительное звено низкоскоростных речевых кодеров, поскольку ее характеристики считаются очень высоко­качественными. Позже был разработан стандарт на адаптивную дифференциальную ИКМ (АДИКМ) со скоростью 32 кбит/с. Снижение скорости цифрового потока наполовину было достигнуто благодаря использованию адаптивного предсказания и адаптивных квантователей для устранения избыточности речи. Некоторые другие кодеры, например с дельта-модуляцией и плавно изменяющейся крутизной (CVSDM — Continuous Variable Slope Delta Modulation) на скорости 32 кбит/с, используются для решения специфичных задач. Хотя подобные высокоскоростные алгоритмы кодирования малоэффективны, они, тем не менее, остаются самыми эксплуатируемыми системами и, возможно, будут оставаться таковыми еще некоторое время.

Импульсно-кодовая модуляция ИКМ (РСМ – Pulse Code Modulation). Рекомендация G.711

При построении систем цифровой передачи непрерывных сообщений принципиальным моментом является определение полосы частот, требуемой для обеспечения заданного качества воспроизведения переданного сообщения. Вообще говоря, для высококачественной передачи речевого сообще­ния требуется полоса не менее 10 кГц.

Однако для достижения удовлетвори­тельного уровня разборчивости при пе­редаче речи по телефонным каналам достаточно передать спектр в полосе 300...3400 Гц. Именно такой спектр звуковых частот обычно передается в современных системах передачи рече­вой информации.

Как правило, максимальная частота передаваемого спектра аудио­сигнала выбирается равной

,а частота дискретизации
(например, рекомендации G.711, G.721), хотя в ряде случаев с целью повышения качества передачи используются и более высокие значе­ния этих величин (например, рекомен­дация G.722).

При использовании ИКМ дискретизированное сообщение подвергается квантованию по L уровням (рис. 1.1), в результате чего каждому значе­нию

ставится в соответствие чи­сло
,
, представленное n-разрядной комбинацией двоичного кода.

Для достижения приемлемого ка­чества восприятия восстановленного речевого сообщения при равномерном (простом) квантовании необходимо

. Столь большое число
уровней квантования при
требует скорости передачи символов в канале не менее
.

Рисунок 1.1

Однако в связи с тем, что при восприятии речи человеческим ухом в области больших мгновенных значений

оказываются допустимыми значительно большие искажения сообщения, чем в области малых мгновенных значений, требуемое число уровней квантования может быть существенно снижено путем использования неравномерного квантования, используя компрессию исходного сообщения по логарифмическому закону с последующим равномерным квантованием при сравнительно малом числе уровней (например, при
или путем соответствующего цифрового преобразования (цифровой компрессии) сообщения, предварительно преобразованного в цифровую форму при сравнительно большом исходном числе уровней квантования (например, при
).

Оптимальный квантователь имеет преимущества, если динамический диапазон входного сигнала фиксирован и достаточно мал. Характеристики квантователя быстро ухудшаются, мощность сигнала изменяется относительно значения, на которое он был рассчитан. Хотя этим процессом можно управлять, нормализуя входной сигнал и приводя его к единому диа­пазону, для правильного определения масштаба амплитуды восстановленно­го после квантователя сигнала потре­буется дополнительно несколько бит, необходимых для передачи динамиче­ского диапазона сигнала в определен­ные моменты времени.

Для обработки входных речевых сигналов с большим динамическим диапазоном используются два зако­на сжатия, называемые импульсно-кодовой модуляцией по закону

(А-ИКМ) и по закону μ (μ-ИКМ). В обеих схемах характеристика от­ношения сигнал/шум квантования (ОСШкв) должна быть близка к харак­теристике для простого квантователя. Вместе с тем характеристики А-ИКМ и μ-ИКМ существенно не изменяют­ся и остаются сравнительно постоян­ными в большом диапазоне уровней входного сигнала. По сравнению с про­стыми квантователями (рис. 1.1) кван­тователи сжатия требуют меньше бит на входную выборку для определен­ного динамического диапазона сжатия и меньшего ОСШкв. В квантователях сжатия уровни квантования находятся в области малых амплитуд, которые увеличиваются при увеличении диа­пазона входного сигнала. Благодаря этому при квантовании речевых сигналов, у которых максимум функции распределения вероятностей находится в начале координат, наиболее ча­сто встречающиеся малые амплитуды квантуются с большей точностью, чем менее вероятные большие амплитуды, что приводит к значительно лучшим, Чем у простого квантователя, характер­истикам.

Сжатие по А-закону определяется зависимостью:

(1.1)

где A — параметр сжатия с типовыми значениями 86 (Северо-Американская ИКМ) и 87,56 (Европейская ИКМ) для семибитных речевых квантователей.

Сжатие по μ-закону определяется выражением

(1.2)

где V0 задается формулой

, в которой L – нагрузочный фактор, a
– среднеквадратическое значение входного речевого сигнала.

Типовое значение фактора сжатия μ равно 255. Выражение (1.1) пока­зывает, что А-закон — это комбина­ция логарифмической кривой, исполь­зуемой для больших амплитуд, и ли­нейного участка, используемого на ма­лых амплитудах. μ-закон не являет­ся в точности линейным или логариф­мическим ни в одном диапазоне, од­нако является приблизительно линей­ным для малых амплитуд и прибли­зительно логарифмическим для боль­ших амплитуд. Сравнение между квантователем по μ-закону и опти­мальным квантователем показало, что оптимальный квантователь дает вы­игрыш 4 дБ, однако может иметь бо­лее высокий уровень фонового шума, когда канал свободен, и его динамиче­ский диапазон сведен к минимальному диапазону входного сигнала. Поэтому наиболее предпочтителен логарифми­ческий квантователь.

Цифровое преобразование непре­рывного речевого сообщения в соответ­ствии с рекомендацией G.711 (рис. 1.2) используется наиболее часто.

Рисунок 1.2

При этом

; частота дискретизации
. После равномерного квантования при числе уровней
и предварительного кодирования производится цифровая компрессия, в результате чего длина кодовой комбинации уменьшается до
разрядов. Результатом преобразования является двоичная последовательность, передаваемая со скоростью 64 кбит/с.

Из различных систем адаптивной ИКМ (АИКМ) наибольшее распространение получила система блочной ИКМ (БИКМ), оторую часто называют системой с почти мгновенным компандированием (NIC — Near Instantaneous Companding).

Отсчеты n-разрядного АЦП разбивают на блоки по N отсчетов. В каждом блоке находят отсчет с макси­мальным для данного блока уровнем. Этому уровню соответствует определенный номер старшего значащего раз­ряда (j), и все старшие разряды в ком­бинациях этого блока будут нулевыми. Записанный в двоичном коде но­мер этого разряда образует масштабную информацию, которая из-за своей важности, как правило, защищается помехоустойчивым кодом. В результате масштабная информация вместе с проверочными символами образует m-значную комбинацию, которую добавляют к основной информации.