Смекни!
smekni.com

Кодеры речи (стр. 2 из 16)

Основная информация формируется выбором k разрядов из n исходных разрядов, причем первым (старшим) разрядом является разряд с номером, описанным в масштабной информации.

Основная информация для каждого из блоков объединяется с масштабной в единый цифровой поток. Результирующая скорость цифрового потока на выходе системы БИКМ

. На практике, как правило, используют следующие параметры:
.

При одинаковых условиях передачи БИКМ дает лучшее качество, чем ИКМ. Поэтому можно снизить скорость передачи до 32.. .56 кбит/с.

Дифференциальная импульсно-кодовая модуляция ДИКМ (DPCM – Differencial Pulse Code Modulation)

Наряду с ИКМ применяются и более эффективные цифровые методы передачи речи. В частности, с целью снижения требований к пропускной способности канала можно использовать наличие корреляции между от­четными значениями передаваемого сообщения. Такой метод называется передачей с предсказанием. При этом последовательность значений

поступает на один вход вычитающего устройства (рис. 1.3,а), в то время как на другой вход поступает предсказанное значение
, полученное тем или иным методом в устройстве предска­зания на основе анализа как преды­дущих отсчетных значений сообщения, так и текущих передаваемых значений на входе вычитающего устройства.

Рисунок 1.3

На приемном конце значения сооб­щения

восстанавливаются путем добавления принятого сигнала ошибки предсказания
к предсказываемому значению
(рис. 1.3,б).

В системе с дифференциаль­ной импульсно-кодовой модуляци­ей (ДИКМ) отсчетные значения

ошибки предсказания подвергаются квантованию с переходом к значениям
аналогично тому, как это делает­ся при использовании обычной ИКМ, однако при существенно меньшем числе уровней квантования. Таким обра­зом, при одинаковом качестве переда­чи речи метод ДИКМ позволяет ис­пользовать меньшее число разрядов n в кодовых комбинациях по сравне­нию с ИКМ. При этом существует большое число различных вариантов реализации метода ДИКМ, наиболее типичный из которых представлен на рис. 1.4.

Рисунок 1.4

При этом имеют место соотноше­ния:

(1.3)

Классификационными признака­ми кодеров ДИКМ считаются нали­чие блока линейного предсказания ав­торегрессионных последовательностей (предсказателя) и использование мно­гоуровневого (больше двух уровней) квантователя. Блок линейного пред­сказания может состоять из двух ча­стей — долговременного и кратковре­менного предсказателей. В канал пе­редается разность истинного и пред­сказанного значений сигнала (сигнал-остаток, он же – погрешность пред­сказания). Системы с ДИКМ обеспе­чивают такое качество восстановления сигнала, которое сопоставимо с предоставляемым ИКМ, и на порядок более высокую помехоустойчивость.

Эффективность метода ДИКМ может быть повышена путем пере хода к адаптивной дифференциальной импульсно-кодовой модуляции АДИКМ.

Адаптивная дифференциальная импульсно-кодовая модуляция (ADPCM — Adaptive Differencial Pulse Code Modulation). Рекомендации G.721 и G.726

ADPCM – один из наиболее об­щепринятых и давно используемых ал­горитмов сжатия речи, который регла­ментируется стандартом G.726, был принят в 1984 г. Этот алгоритм да­ет практически такое же качество вос­произведения речи, как и РСМ, однако для передачи информации при его ис­пользовании требуется всего 32 кбит/с. Метод основан на том, что в анало­говом сигнале, передающем речь, не­возможны резкие скачки интенсивно­сти. Поэтому, если кодировать не са­му амплитуду сигнала, а ее измене­ние по сравнению с предыдущим зна­чением, то можно обойтись меньшим числом разрядов. В ADPCM изменение уровня сигнала кодируется четырехразрядным числом, при этом частота измерения амплитуды сигнала сохраняется неизменной.

Все методы кодирования, основанные на определенных предположениях о форме сигнала, плохо работают в ситуации, когда сигнал может передаваться с резкими скачками амплитуды. Именно такой вид имеет аудиосигнал, генерируемый модемам или факсимильными аппаратами. Современные системы обмена информацией, поддерживающие цифровые ли­нии связи, умеют распознавать фак­симильный обмен и передают соответ­ствующие сигналы непосредственно в цифровом виде, не преобразуя их в ау­диосигнал.

Нелинейный 15-уровневый адаптивный квантователь используется для квантования разностного сигна­ла

. Перед квантованием сигнал
логарифмируется по основанию 2 и масштабируются посредством коэф­фициента
, который вычисляется с помощью блока адаптации масштаб­ного коэффициента.

Для определения квантованного уровня

используются четыре дво­ичных символа (три для амплитуды и один для знака). Четырехбитовый вы­ход квантователя
образует выход­ной цифровой сигнал со скоростью 32 кбит/с, который одновременно подает­ся на инверсный адаптивный кванто­ватель и блок управления скоростью адаптации масштабного коэффициента квантователя.

Квантованная версия разностного сигнала

формируется путем мас­штабирования с использованием спе­циальной величины
, выделяемой из нормализованной характеристики квантователя, и дальнейшей транс­формации результата из логарифмиче­ского представления.

Блок адаптации масштабного ко­эффициента квантователя вычисляет

— масштабный коэффициент для квантователя и инверсного квантовате­ля. На его входы подаются четырехби­товые выходные сигналы квантователя
и параметр управления скоростью адаптации
.

Основной принцип, реализуемый при масштабировании, заключается в бимодальной адаптации:

– быстрой – для сигналов (напри­мер, речевых), которые дают разност­ные сигналы с большими флуктуациями;

–медленной – для сигналов (например, данных в диапазоне тональ­ных частот, тонов), которые дают разностные сигналы с малыми флуктуациями.

Управление скоростью адаптации производится с помощью комбинации быстрого и медленного масштабных коэффициентов.

Быстрый (нефиксированный) масштабный коэффициент

вычисляется рекурсивно в логарифмиче­ском представлении с основанием 2 из результирующего логарифмическо­го масштабного коэффициента
:

(1.6)

Как правило,

лежит в пределах
. Дискретная функция
определяется таблич­ным образом. Множитель (1 – 2-5) вводит ограниченную память в процесс адаптации таким образом, что состо­яния кодера и декодера сходятся при ошибках передачи.

Медленный (фиксированный) мас­штабный коэффициент

получа­ется из
с помощью операции фильтрации нижних частот:

(1.7)

Затем быстрый и медленный мас­штабные коэффициенты объединяются для получения результирующего мас­штабного коэффициента:

(1.8)

где

.

Управление скоростью адапта­ции. Предполагается, что управляю­щий параметр

может принимать значения в диапазоне [0, 1]. Для рече­вых сигналов он стремится к единице, Для сигналов, данных в диапазоне то­нальных частот и одночастотных сигналов он стремится к нулю. Величи­на коэффициента определяется мерой скорости изменения величины разност­ного сигнала.

Адаптивный предсказатель и калькулятор восстановленного сигна­ла. Первоначальная функция ада­птивного предсказателя заключается в вычислении оценки

разностного сигнала
. Используются две структуры адаптивного предсказате­ля – каскад первого порядка, модели­рующий нули, и каскад второго поряд­ка, моделирующий полюсы во входном сигнале.