Рисунок 5.8
После правильного восстановления спектральных величин МВЕ-кодер пытается улучшить качество восприятия синтезированной речи с использованием усилителя. Усиление спектральных величин выполняется генерированием набора спектральных весов из принятых параметров текущего фрейма.
В типичном МВЕ-кодере большая часть бит выделена для квантования спектральных величин. В случае системы INMARSAT-M, где кодер источника работает на скорости 4,15 кбит/с при скорости фреймов 50 Гц, только 20 (8+ 12) бит используются для формирования информации об основном периоде и информации «вокал/невокал». Остальные биты используются для квантования спектральных величин. Таким образом, для успешного синтеза речи необходимо точно знать основной период. Для покрытия речевого спектра 4 кГц достаточно 12 полос вокал/невокал. В результате общая скорость кодера может быть уменьшена за счет более эффективного квантования величин. В системе INMARSAT-M все спектральные величины, кроме шести, проквантованы с использованием скалярных квантователей. Сокращение скорости можно добиться также за счет векторного квантования всех величин. Однако, так как число спектральных величин может изменяться от 9 до более чем 60 в зависимости от основной частоты, векторную кодовую книгу, учитывающую эти изменениями, создать очень сложно. Поэтому целесообразно векторное квантование использовать только для основной формы спектра, которая может быть принята независимой от основной частоты.
В данной главе будут коротко рассмотрены перспективы использования различных речевых кодеков в сетях связи общего пользования.
Рассмотрим некоторые параметры наиболее распространенных кодеков сетей общего пользования.
Однако, кроме кодеков ИКМ по G.711, на ССОП в настоящее время применяются аналого-цифровые преобразователи других типов, использующие те или иные способы компрессии речи и поэтому имеющие меньшую скорость передачи цифрового сигнала по сравнению со стандартным кодеком ИКМ. Основные области применения низкоскоростных кодеков: • системы подвижной связи (в частности, цифровые сотовые и транкинговые системы); • аппаратура DCME (в небольшом количестве используется на сети ОАО «Ростелеком»); • абонентские компьютерные и мультимедийные терминалы, аппараты IP-телефонии;
• цифровые беспроводные телефоны.
Таблица 6.1. Наиболее распространенные кодеки.
Кодек | Наименование | Скорость кбит/с | Стандарт |
Standard PCM | Стандартный ИKM кодек для сетей с коммутацией каналов | 64 | ITU-T G.711 |
GSM-FR PRE-LTP | Кодек 1-го поколения GSM с возбуждением регулярной последовательностью импульсов и долговременным предсказанием | 13 | ETSIGSM 06.16 |
GSM-HR VCELP | Кодек GSM (с «половинной» скоростью) с линейным предсказанием и возбуждением векторной суммой | 5,6 | ETSIGSM 06.20 |
GSM-EFR ACELP | Кодек 2-го поколения GSM с алгебраическим кодовым возбуждением и линейным предсказанием | 12,2 | ETSIGSM 06.60 |
Videophone ACELP | Речевой кодек для мультимедийной связи с алгебраическим кодовым возбуждением и линейным предсказанием | 5,3 | ITU-T G.723.1 |
Videophone MP-MLQ | Речевой кодек для мультимедийной связи с многоимпульсным квантованием по критерию правдоподобия | 6,3 | ITU-T G.723.1 |
ADPCM | Кодек АДИКМ (адаптивной дифференциальной ИКМ) | 40, 32, 24, 16 | ITU-TG.726 |
LD-CELP | Кодек с линейным предсказанием, с кодовым возбуждением и малой задержкой | 16, 12, 8, 9, 6 | ITU-TG.728 |
CS-ACELP | Кодек с линейным предсказанием, алгебраическим кодовым возбуждением и сопряженной структурой | 8 | ITU-TG.729 |
Низкоскоростным кодекам свойственны определенные ухудшения параметров, влияющие на качество передачи речи, по сравнению со стандартным кодеком ИКМ. Важно, что эти ухудшения накапливаются при тандемном включении как однородных, так и разнородных низкоскоростных кодеков.
Следует отметить следующие основные факторы, влияющие на качество передачи речи при использовании кодеков:
• искажения квантования;
• временная задержка;
• амплитудно-частотные искажения;
• битовые ошибки;
• проскальзывания;
• потеря кадров;
• потеря пакетов.
Планирование речевых соединений требует обязательного учета ухудшений, вносимых каждым переходом А-Ц и Ц-А, и определения на этой основе допустимого количества таких переходов. Для этой цели используется так называемая Е-модель, разработанная ETSI и рекомендуемая МСЭ-Т при планировании речевых соединений «из конца в конец». Эта модель позволяет в комплексе учесть практически все ухудшающие факторы.
Наиболее важным параметром Е-модели является коэффициент ухудшения за счет аппаратуры, обозначаемый Ic. Чем больше этот коэффициент, тем большую долю деградации вносит данная аппаратура (конкретно – кодек). В табл. 6.2 для сравнения показаны значения для различных кодеков.
Таблица 6.2
Кодек | Скорость кбит/с | Стандарт | Ic(G.113) |
Standard PCM | 64 | ITU-T G.711 | 0 |
GSM-FR PRE-LTP | 13 | ETSIGSM 06.16 | 20(25-42)* |
GSM-HR VCELP | 5,6 | ETSIGSM 06.20 | 23(32-45)* |
GSM-EFR ACELP | 12,2 | ETSIGSM 06.60 | 5(15-35)* |
Videophone ACELP | 5,3 | ITU-T G.723.1 | 19 |
Videophone MP-MLQ | 6,3 | ITU-T G.723.1 | 15 |
ADPCM | 40, 32, 24, 16 | ITU-TG.726 | 2, 7, 25, 50 |
LD-CELP | 16, 12, 8, 9, 6 | ITU-TG.728 | 7, 20 |
CS-ACELP | 8 | ITU-TG.729 | 10 |
* – при наличии битовых ошибок |
Проблема задержки сигнала. Среди многих факторов, влияющих на качество передачи речи, можно отметить задержку сигнала в терминалах и узлах сети.
Желательной является задержка, не превышающая 150 мс, поскольку кроме задержки следует учитывать и другие ухудшающие факторы. Как уже указывалось, задержка, вносимая стандартными кодеками ИКМ, незначительна и составляет меньше 0,4 мс.
Существенное увеличение задержки по сравнению со стандартными кодеками ИКМ дают низкоскоростные кодеки. В частности, только сами кодеки в терминалах GSM вносят задержку в 60 мс, что эквивалентно времени прохождения через волоконно-оптическую линию связи (ВОЛС) длиной 12000 км. Процедура «фрейминга» (формирования кадров) на радиоинтерфейсе добавляет еще 35 мс задержки.
В табл. 6.3 представлены задержки, вносимые речевыми кодеками (МСЭ-Т G.114) различных типов, и соответствующие эквивалентные длины ВОЛС. Из таблицы следует, что задержки в низкоскоростных кодеках весьма велики, что делает дополнительные перекодировки практически недопустимыми. При этом нельзя упускать из виду повышенные задержки в таких сетевых элементах как шлюзы, маршрутизаторы и т. д.
Таблица 6.3
Кодек | Стандарт | Средняя задержка, мс | Эквивалентная длина ВОЛС, км |
Standard PCM | ITU-T G.711 | 0,375 | 75 |
GSM-FR RPE-LTR | ETSI GSM 06.10 | 95 | 19000 |
GSM-HR VCELP | ETSI GSM 06.20 | 95 | 19000 |
GSM-EFRACELP | ETSI GSM 06.60 | 95 | 19000 |
Videophone ACE LP | ITU-TG.723.1 | 97,5 | 19500 |
Videophone MP-MLQ | ITU-T G.723.1 | 97,5 | 19500 |
ADPCM | ITU-T G.726 | 0,375 | 75 |
LD-CELP | ITU-T G.728 | 1.875 | 375 |
CS-ACELP | ITU-T G.729 | 35 | 7000 |
Таким образом, приходится делать выбор между качеством связи и шириной канала поэтому задача проектирования наиболее качественных кодеков для низкоскоростных каналов с высоким уровнем помех весьма актуальна.
Рассмотрим наиболее эффективные, сегодня методы практической реализации низкоскоростных (1,2—2,4 кбит/с) MELP-вокодеров. предназначенных для работы в канале с высоким процентом канальных ошибок, и основные направления совершенствования данных методов.
В качестве базового алгоритма вокодера был выбран алгоритм MELP–2400, разработанный фирмой TexasInstruments и выигравший открытый конкурс по замене кодека федерального стандарт США FS-1016. Данный алгоритм основан на традиционной параметрической модели кодирования с линейным предсказанием и, кроме того, содержит ряд дополнительных особенностей:
• вся рабочая область частот делится на пять полос; в каждой из которых принимается решение о классе сигнала возбуждения — «шумовой» или «голосовой». Таким образом суммарный сигнал возбуждения является смешанным;
• форма «голосового» сигнала возбуждения реконструируется в декодере с помощью амплитуд коэффициентов Фурье, вычисленных в анализирующей части вокодера:
• для реализации одиночных импульсов возбуждения применяются «апериодические» импульсы;
• с целью улучшения «натуральности» звучания синтезированной речи применяются дисперсионный и адаптивный фильтры.
Суммарный список параметров, передаваемых от колера к декодеру за один речевой фрейм длительностью 22.5 мс, представлен в табл. 6.4.
Таблица 6.4.
Параметр | «Голосовой»фрейм (бит) | «Шумовой»фрейм (бит) |
Линейные спектральные пары | 25 | 25 |
Амплитуды преобразования Фурье сигнала возбуждения | 8 | – |
Коэффициенты усиления (2 за фрейм) | 8 | 8 |
Период основного тона, общая озвученность фрейма | 7 | 7 |
Озвученность по полосам | 4 | – |
Флаг периодичности | 1 | – |
Защита от ошибок | – | 13 |
Синхробит | 1 | 1 |
Всего за кадр, 22.5 мс | 54 | 54 |
Выбранный вокодер обеспечивает хорошее звучание синтезированной речи при скорости битового потока 2,4 кбит/с и величине битовых ошибок не более.