Теорема 3. Якщовстаціонарнійкрапці в0перші (n - 1) похідних функцій звертається в нуль, а
, то при в=у0функція
має:
(1) крапку перегину, якщо n – непарне;
(2) екстремальну крапку, якщо n – парне. Екстремальній крапці відповідаємаксимумпри і мінімум при
.
1.3. Екстремальні задачі при наявності обмежень у виді рівності
Існує два методи оптимізації при наявності обмежень у виді рівностей. Один з них — метод Якобі. Він являє собою узагальнення симплекса-методу лінійного програмування. Дійсно, усі процедури, зв'язані з реалізацією симплекса-методу, можна обґрунтувати, користаючись методом Якобі. Інший метод, метод множників Лагранжа, тісно зв'язаний з методом Якобі і є його логічним розвитком.
2. АНАЛІЗ ЧУТЛИВОСТІ ЗА ДОПОМОГОЮ МЕТОДУ ЯКОБІ
2.1 Метод Якобі
Метод Якобі може бути використаний для дослідження чутливості оптимального значення f м малим змінам у правих частинах обмеження. Припустимо, наприклад, що в правій частині i-го обмеження gi(x)=0 фігурує величина
Нехай
Підставивши останнє вираження в рівняння для
що відповідає введеному раніше визначенню. Вираження для
Отже, вплив малих змін на оптимальне значення f можна досліджувати шляхом оцінювання швидкості зміни f стосовно змін д. Ці величини звичайно називають коефіцієнтом чутливості.
В екстремальній крапці коефіцієнти
Тому розбивка вектора Х на Y і Z у даному випадку не є істотним чинником. Таким чином, зазначені коефіцієнти залишаються постійними при будь-якому виборі вектора Y. Вище показано, що коефіцієнти чутливості
можна використовувати для дослідження впливу малих змін у правих частинах обмежень на оптимальне значення f. Крім того, було так само відзначене, що ці коефіцієнти є постійними величинами. Перераховані властивості коефіцієнтів чутливості виявляються корисними при рішенні задач з обмеженнями у виді рівностей. Нехай
Це рівняння відбивають необхідні умови стаціонарності крапок, тому що формула
Отримані рівняння разом з обмеженнями g=0 дають можливість визначити припустимі вектори х і
2.1 Метод Лагранжа
Описана вище процедура складає основу так називаного методу множників Лагранжа, що дозволяє ідентифікувати стаціонарні крапки при рішенні оптимізаційних задач з обмеженнями у виді рівностей. Схему цього методу можна формально представити в такий спосіб. Нехай
L(x,)=
Функція L називається функцією Лагранжа. Параметри
виражають розглянуті вище необхідні умови наявності єкстремуми, що породжуються функцією Лагранжа безпосередньо. Це означає, що задача оптимізації з цільовою функцією f(x) при наявності обмеження g(х)=0 еквівалентна задачі перебування безумовного єкстремуми функції Лагранжа
L(x,
Матриця НB являє собою так називану облямовану матрицю Гессе.
Нехай дана стаціонарна крапка (х0,
1) крапкою максимуму, якщо, починаючи з головного мінору порядку (m+l), наступні (n-m) головних мінорів матриці НВ утворять знакоперемінний числовий ряд, знак першого члена якого визначається множником ,(-1)м+1;
2) крапкою мінімуму, якщо, починаючи з головного мінору порядку (m+1), знак наступних (n-m) головних мінорів матриці НВ визначається множником (-1)м. Сформульовані умови виявляються достатніми для ідентифікації екстремальної крапки, але не є необхідними. Іншими Словами, стаціонарна крапка, що не задовольняє цим умовам, може бути екстремальною. Існують інші умови для ідентифікації екстремальних крапок, що є як необхідними, так і достатніми. Однак практичне використання цих умов у ряді випадків зв'язано зі значними обчислювальними труднощями. Визначимо матрицю
утворену значеннями відповідних функцій у стаціонарній крапці (Хо,
1)негативним, якщо хо - крапка максимуму;
2)позитивним, якщо хо- крапка мінімуму.
Один з методів, що іноді застосовуються для рішення систем рівнянь, що виражають необхідні умови наявності екстремуми, полягає в послідовному виборі числових значень